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Summary 
 
Gravity and gravitation belong to the fundamental forces of physics. In the Newtonian 
sense, the “apple falling from the tree” illustrates a fundamental (horizon) system of 
directions in space, and yields the possibility, by measuring its location and the time it 
takes to fall, to determine the modulus (amount) of the gravity vector. Only a few 
sectors of life are not, in any way, affected by gravity. Consequently, the applications of 
gravimetry are numerous: navigation, various types of high-precision calibration, 
geoexploration, planetary exploration, satellite and deep space orbit determination, 
water level (particularly, mean sea level) studies, tides, all kinds of trajectories in space, 
time measurement and dissemination, geodynamics, precise determination of heights, 
elevations and their temporal variations, mining surveys, surveying and geodesy, and so 
on. They all depend, in one or another way, on the precise knowledge of gravity, that is, 
on the results of space and terrestrial gravimetry (and associated surveys) as obtained 
from borehole or various types of classical terrestrial gravimeters, as well as from space 
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(satellite) observations. DGPS (Differential GPS)-techniques have greatly improved all 
types of terrestrial gravity surveys. In addition, (kinematic) GPS, velocity 
determination, as well as less expensive and more efficient inertial navigation 
technology (INS) have made shipborne gravity surveys more reliable, and led to a 
complete revival of airborne gravimetric surveys in the early 1990s. Moreover, satellite 
altimetry strongly benefited from spaceborne GPS. 
 
In principle, all near-Earth satellite techniques can also be applied to gravimetric lunar 
or planetary field studies; some of them have led (or can lead) to excellent information 
on the lunar and planetary (for example, Martian) gravity fields. 
 
Whenever one relies on accuracy better than one part in a hundred million, one has to 
apply Einsteinian or general relativity theory instead of Newtonian concepts. The 
impact of space observations is strongly increasing; consequently, various types of 
satellite measurements gain more interest where gravity is often a by-product that is 
obtained at relatively low costs. 
 
1. Introduction 
 
Almost all phenomena on Earth are, in one or the other way, influenced and affected by 
Earth’s gravity field. In many cases, a precise determination and evaluation of gravity is 
necessary; typical examples are satellite orbits, calibration procedures, navigation, and 
precise elevation determination.  
 
For most practical applications, and in view of the dependence of gravity on 
topography, it would be a reasonable goal that gravity surveys should provide (in 
developed countries) gravity with accuracy of 0.2 × 10-5 m s-2 (or 0.2 milliGal (mGal) 
where 1 Gal corresponds to 10-2 m s-2) at station separation of 2 km to 5 km. Elevations 
for DTM (digital terrain models) with grid distances of no more than 40 m should also 
be available. In general, accuracies of 0.5 × 10-5 m s-2, referred to precisely defined 
frames of reference, with wavelengths of about 10 km, could be sufficient. 
 
Correspondingly, absolute gravity measurements should provide reference stations with 
accuracies of 10 μGal (microGal) and 3 μGal precision at station separation of several 
hundred kilometers, so that relative gravimetry can fill in by densification. For special 
purposes (tides, geodynamics, geoexploration), higher local accuracy may be needed. In 
developing countries, we are still far apart from this situation. This aim can only be 
achieved by the combined use of space (satellite), terrestrial stationary, and mobile (air- 
and shipborne) gravimetric approaches; moreover, gravity surveys are also needed at 
sea, on ice and islands, in deserts, in space, and around the Moon and planets. Present 
space projects such as GOCE and GRACE aim for global coverage at a wavelength of 
about 100 km with about 1 mGal accuracy. GRACE puts emphasis on low harmonics, 
whereas GOCE emphasizes higher harmonics.  
 
Mobile terrestrial techniques, in combination with space techniques, should deliver in 
the future mean gravity values for wavelengths at Earth’s surface (or blocks) of 5 km to 
10 km with accuracies better than 0.1 mGal, which is meanwhile more important than 
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point gravity values with higher accuracy. Accordingly, DTM for grid distances of 20 m 
is desired, in general, for the future.  
 
In gravimetry, we basically determine the modulus g = G  of gravity at a geocentric 

location ( )iP x  within a topocentric horizon system ( )ix′   for a “tide-free” Earth model 
where, however, the permanent tides (corresponding to Mo and So, the permanent lunar 
and solar tides, respectively) are not fully eliminated. Permanent tides need a special 
treatment in view of their anharmonic part. However, the direction e g= G  (with 

g = G ) of the gravity vector G  is also observed using long vertical and horizontal 

pendulums for special purposes. Moreover, the direction e  with respect to an ellipsoidal 
geocentric reference system is derived in terms of plumb line or vertical deflections 
from g using Vening-Meinesz’s formula. Deflections of the vertical are used for various 
geophysical and geodetic purposes. In gravity gradiometry, we aim at accuracies of 
about one Eötvös (E), where 1 E = 10-9 s-2, mainly in space applications. Single 
integration then yields (relative) gravity, and double integration leads to potential 
differences where the geopotential W is usually expressed in kGal m and 1 kGal m = 10 
m2 s-2. Gradients represent a tensor with components ( )2 , 1, 2,3i jx x i j′ ′∂ ∂ =W  in a 
Cartesian topocentric terrestrial system, and second derivatives are usually abbreviated 
by ijW . In space applications, an orbital Cartesian system is preferred, with radial, cross-
track, and along-track components as described below. 
 
2. Gravity Representation of the Deformable Earth and its Models 
 
The gravity field of the deformable Earth is built up by gravitation, that is, the attraction 
of the solid and fluid Earth, its atmosphere, and the attraction of the masses in space. On 
a rotating Earth, the centrifugal potential H  also has to be considered. Due to the 
mobility of those masses, the gravity field varies with time. If we ignore, at first, the 
mass of the atmosphere (which amounts to only 10-6 of the fluid and solid masses of 
Earth itself), and dismiss for a while extraterrestrial masses (planets, Moon, Sun etc.) 
one may associate a scalar gravity potential W  with the gravity acceleration G  by the 
relation (at any time t): 
 
− = ∇G W           (1) 
 
where the minus sign is a matter of convention depending on the definition of work 
associated with the potential. In an “earth-fixed“ geocentric coordinate system, xi, where 
the x3-axis points towards the geographic North Pole and ( )1 2,x x  define a terrestrial 
equator, and where 1x  lies in the Greenwich meridian (plane), at any location P  the 

gravity vector G  points towards the zenith. The plane orthogonal to G  is called the 
horizon, and may define at P  a topocentric coordinate system ix′  with 3x′  antiparallel to 

G , ( )1 2,x x′ ′  defining the plane of horizon, with 1x′  pointing towards the north and x′  
pointing towards the east. The transition between ix  and ix′  is done by well-known 
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relations illustrated by the “astronomical triangle.” As xi is rotating with the velocity of 
Earth, ω , where x3 is however not parallel to ω  (in view of polar motion ( )3, xω  which 
amounts to about 10 m at the pole), we further need a geocentric inertial frame, iX , 
which is considered to be “space-fixed,” with 3X  aligned to ω  and ( )1 2,X X  defining 
the celestial equator ω  (ignoring small nearly-diurnal rotations with amplitudes of ∼0.2 
m which make up the difference between ω  and the direction from geocentre to the 
Celestial Ephemeris Pole (CEP)); 1X  points towards the equinox, which defines the 
intersection between the celestial equator and the ecliptic being the path of the Earth–
Moon barycentre around the sun. Due to nutation and precession, iX  is not a perfect 
inertial system in the Newtonian sense; it, therefore, needs corrections. 
 
Eq. (1) basically defines a “conservative” force, where a time-dependent  ( ),r tW  has 

to be reduced to ( )rW , which depends only on the geocentric location ( )ir x  . This 
means that a “tide-free” model-Earth replaces the actual Earth. The gravitational effect 
of the atmosphere is taken into account by “atmospheric corrections” where, however, 
effects of the order of 10-7 can often be ignored. The basic unit of gravity, g, (being the 
modulus of G ) is the milliGal (= 10-5 m s-2), where tidal effects are of the order of 0.2 
mGal at Earth’s surface. W  is built up by the potential of gravitation, V , plus the 
(anharmonic) potential of the centrifugal acceleration, H  where the centrifugal force 
amounts at Earth’s surface to ∼1 % of g; consequently: 
 

= +W V H           (2) 
 
In a vacuum, V  fulfills the Laplace equation so that: 
 

0Δ =V           (3) 
 
which is a special case of the Poisson equation: 
 

4 Gπ ρΔ = −V           (4) 
 
where ρ  is density and G  the Newtonian gravitational constant. For global purposes, 
V  may be expanded, as a harmonic function, in a series of spherical harmonics (where 
( ),ϕ λ ) are latitude and longitude, respectively). At Earth’s surface, we get an 
asymptotic series yielding good approximations in the form (with geocentric spherical 
coordinates ( ), ,r ϕ λ )): 
 

( ) ( )
n

1

1   0
( , , )  cos sinm m m n

n n n
n m

GMr a m b m P r
r

λ ϕ λ λ θ
∞

+

= =

= + +∑ ∑V    (5) 

 
with colatitude 90 , m

nPθ ϕ= ° −  are Legendre polynomials of degree n  and order m  and 
M  is the mass of Earth. A more convenient form of Eq. (5) reads (with n′  = degree of 
approximation, truncation, and R  = equatorial radius): 
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With G  being tangent to the plumb-line at any point P , we obtain in spherical 
approximation (which means an approximation of the order of the flattening of Earth or 
1/300): 
 

g V r− ≅ ∂ ∂           (6) 
 
A spheroid (rotational ellipsoid) is considered as a good approximation to Earth if it 
rotates with mean ω  (within ±10-8), has its origin at the geocenter, has semi-major axis 
a R= , with 6378136.7a ≅ m, flattening ( ) 1 298.25a b a− ≅  where b = semi-minor 
axis, and its mass is equal to M . We may define such an earth-ellipsoid (in the best 
fitting sense with respect to the geoid) as a “normal Earth” so that its “normal” potential 
is denoted by U , γ− = ∇U , and the geoid is (approximately) coinciding with a level 
surface W  = constant at mean sea level (MSL) all over Earth. Since the unit of W  (m2 

s-2) is only dependent on time (because the meter is basically now defined by the time of 
propagation of light in a vacuum), there is no scaling problem in (absolute) gravity 
measurements. Determinations of GM and its temporal variations, if any, are extremely 
important, as GM is a “scale factor” in space science, similar the role of G in terrestrial 
science. GM in Eq. (5) is observed from satellite orbits according to Kepler’s third law, 
and is, therefore, known with extremely high accuracy, whereas G has only been 
determined until now with an accuracy of less than ±10-6 based on the Cavendish 
torsion balance principles; modern modifications did not yet yield substantially higher 
accuracy. Space experiments may yield better precision in the future. Consequently, the 
mass of Earth is still not yet known any. From the (harmonic) disturbing potential: 
 

= −T W U –          (7) 
 
we find the separation between the earth ellipsoid and the aforementioned geoid, N  
(geoid height), using Bruns’ formula: 
 
N γ= T .          (8) 
 
and the angle ( ),γG  is called deflection of the vertical. However, Eq. (8) holds only if 

the potential U  at the ellipsoid is exactly equal to W  at the geoid, which now holds 
approximately within 10-7. We may define the gravity disturbance at any point P (with 
outer ellipsoidal surface normal n): 
 

( ) ( ) ( )g P g P P d dnδ γ= − = − T        (8a) 
 
whereas the difference: 
 

( ) ( ) ( ) ( )g P g P Q g P Nd dnγ δ γΔ = − = +        (8b) 
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is called the gravity anomaly, and Q  is the vertical projection (map) of any point P  of 
the geoid onto the ellipsoid.  
 
The theory and practical formulation of equipotential reference gravity models in 
addition to the original Somigliana-Pizzetti ellipsoidal model for normal gravity γ  are 
presently under consideration. Truncated higher order spherical harmonic expansions 
could also be one alternative for global geophysical modeling. Theoretical aspects of 
this kind are discussed in more detail elsewhere (see chapter Gravity Field of the Earth). 
A more reliable value for the geopotential at the geoid is W = 62 636 856.0 m2 s-2. 
 
By ignoring first the other force fields besides Earth’s gravity field, we may, in a 
Newtonian inertial geocentric system Xi (reduced for nutation and precession), write the 
equation of motion: 
 

ma=F           (9) 
 
where a− = ∇V , m is a mass point, and F  is any force. Then, for 1m =  we find for a 
multiple force field: 
 

{ } j ij
j j

f≡∑ ∑F  

 
 i ij

j

X f= ∑           (10) 

 
and, again, for { }( )1,2,3ig i= =G�  and { }ia a=  , (where ig  and i∇V  are projections of 

G  and ∇V  onto iX , respectively). If we ignore non-gravitational forces:  
 

2 2

2 2   and, analogously,  i i
i i i i i

d X d x
X a x g

dt dt
≡ = − = ∇ ≡ = −V    (10a) 

 
so that double integration with respect to time yields coordinate differences 

( ) ( )0i iX t X t− . 
 
Because of the varying density distribution in the atmosphere (passat and monsoon 
wind, atmospheric “lows” and “highs,” associated loading at Earth’s surface, etc.), in 
the oceans, and in the solid earth, the location of the geocenter is not perfectly stationary 
within the earth; it varies with subdecimeter changes. If it were exactly stationary, the 
first degree terms in Eq. (5) would disappear in a geocentric system. In addition, the 
terms of degree two and order one would vanish if the terrestrial (geographic) pole were 
exactly located on the axis of maximum moment of inertia (figure axis).  
 
In any non-inertial system related to the rotating Earth there are the centrifugal 
acceleration: 
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( )c rω ω= × ×          (11) 
 
and the Coriolis acceleration: 
 
( )2 ω ν×           (12) 

 
where ν  is the velocity of a mobile station within an “earth-fixed” frame. If, in 
addition, Earth’s spin vector ω  is considered as time varying rotation with 

0d dtω ω≡ ≠ , there is also the Eulerian acceleration: 
 

rω ×            (13) 
 
The accelerations in Eqs. (11) and (12) play a significant role for gravimetry in (mobile) 
vehicles such as airplanes, ships, and boats. Thus, velocities have to be taken into 
account in exactly defined mobile frames of reference that can be implemented by 
three-axes gyroscope systems, to which GPS (Global Positioning System) satellite 
receivers and/or accelerometers can be related on-board. In case of navigation, these 
observations have to be processed in real-time. In this way, the precise transformations 
between the aforementioned reference frames become important. Accelerations within 
the solar or galactic system are seldom taken into account. However, recently, for exact 
tidal corrections, the nearest (terrestrial) planets and luni-solar effects have been taken 
into account. In this context, a (partly anharmonic) tidal potential is derived from the 
tidal acceleration, which is basically the difference between the gravitational 
acceleration at a station P and the orbital acceleration (of Earth in its orbit around a 
celestial body) at the same point. On a deformable body (such as Earth) rotating around 
the Sun there is a triple tidal effect consisting of (a) the attraction of the celestial body, 
(b) the shift of station P due to the deformation of Earth’s surface at P, and (c) the 
potential change due to the deformation (mass redistribution). In addition, on an Earth 
covered by oceans, the shift of water masses generates (a) a loading effect 
(deformation), (b) varying attraction of redistributed masses, and (c) the shift of the 
deformed earth surface caused by the load. Actually, there are consequently six tidal 
contributions. Also the (tidal) vertical acceleration of the deformable surface of Earth at 
a station P generates a small additional tidal (inertial) perturbation; however, it is only 
considered in very precise tidal work. If we define the earth ellipsoid as a level 
ellipsoid, with U° (= U on the ellipsoid) constant, it is uniquely defined by four 
independent parameters such as (f, a, ω, GM); we may also replace, for example, f by 
the second degree zonal harmonic of the gravitational potential. 
 
In general, gravity is treated within the terrestrial system as a Newtonian quantity, so 
that relativistic corrections play only a significant role in extraterrestrial considerations. 
These orbital calculations are usually carried out in a Newtonian inertial reference 
frame. Relativistic corrections are taken into account with satellite positioning in the 
special relativistic sense and in corrections of time, in view of potential differences 
between clock locations and the potential W at the geoid, and in deriving TAI (temps 
atomique international, or international atomic time) in the general relativistic sense. 
Also, with the reduction of long range distances obtained from VLBI (very long base 
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line interferometry), lengths are treated in the relativistic sense. Beyond these effects, 
the gravity field is evaluated in the Newtonian sense.  
 
We may conclude this introductory section with some summarizing remarks on the 
aforementioned reference systems. The topocentric (astronomical) horizon system 
oriented along G , north and east, can be identified with the “observation space” of 
terrestrial gravity measurements where G  is implemented by a bubble or electronic 
level (or even a vertical pendulum). The associated “model space” is usually the 
(geodetic) horizon system, where the role of G  is played analogously by the (unique) 
ellipsoidal normal, N , which slightly differs in direction from γ . The transition 
between both systems is done by the Laplace condition, which takes into account the 
small differences between astronomical north (meridian) and geodetic north (geodetic 
meridian), as well as astronomical and geodetic horizons. 
 
For space observations, the transition from the non-rotating, “pseudo-inertial” system Xi 
to the “earth fixed” system xi is done using Greenwich (apparent sidereal) time, being 
basically the Eulerian angle between x1 and X1. For satellite positioning, we may use 
Keplerian elements (a, i, e, Ω, ω, v') as an alternative to Cartesian coordinates, where 
the six elements correspond to ( ),i iX X ; they are explained in any textbook on 
(Keplerian) orbits. Even if we ignore galactic rotation and the accelerations of the 
Earth–Moon system in the ecliptic (including planetary precession), the luni-solar 
precession-nutation of Xi has to be taken into account in evaluating satellite locations 
(ephemerides) in space. We may also apply a rectangular topocentric orbital space 
system with origin at the spacecraft-mass center with along-track, cross-track, and radial 
axes or components. 
 
Similarly, the earth-fixed (rotating) equatorial system, xi, is not really “earth-fixed,” as 
the lithosphere (uppermost, at depth < 100 km, “rigid” plate system at Earth’s surface) 
is moving horizontally in an almost monotonous way at velocities of some centimeters 
per year, with collision and subduction zones due to individual motion of plates (for 
details see chapter Tectonic Processes). The terrestrial equatorial system may be 
identified with the “model space,” and the associated (rotating) equatorial system 
oriented along the Celestial Ephemeris Pole (CEP) would play the role of the 
“observation space.” The three Eulerian angles for the transition from terrestrial to 
celestial systems would then be the Greenwich-meridian (longitude zero) component of 
polar motion, its component rectangular to it in the plane tangential to the terrestrial 
(geographic) pole and Greenwich time, as described above. 
 
- 
- 
- 
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