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Summary 
 
Decisions in various spheres of activity including those of environmental or geo-
political nature are often made on the basis of statistical analyses involving several 
variables. Certain basic results on multivariate distributions as well as some of the main 
techniques utilized in multivariate statistical inference are presented in this chapter. 
Some numerical examples illustrate the theory. 
 
1. Introduction 
 
Multivariate methods analyze several variables simultaneously, unlike the more familiar 
univariate or bivariate methods which deal with only one or two variables. A variable 
can be independent (or explanatory) in which case it is a quantity used to explain or 
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predict the values of other variables which are called dependent (or response) variables. 
Multivariate statistical inference is often based on a data table (also called a data matrix) 
consisting of rows and columns. In this chapter, the rows contain the variables and the 
columns represent the objects or individuals being studied. Many of the results derived 
in multivariate analysis rely on matrix algebra, and it is assumed that reader has some 
knowledge of linear algebra in addition to being familiar with the basic concepts of 
mathematical statistics. 
 
Section 2 introduces certain distributional properties of multivariate normal and 
elliptically contoured random vectors; some basic results are also presented in 
connection with quadratic forms and the Wishart distribution is defined. Estimators of 
the mean and covariance matrix of a ultivariate normal distribution are given in Section 
3, while useful tests of hypotheses are enumerated in Section 4. Section 5 covers 
multiple regression and correlation as well as one- and two-way multivariate analysis of 
variance. Discriminant analysis is introduced in Section 6. Certain multivariate 
covariance structures are discussed in Section 7 and Section 8 which, respectively, deal 
with principal components and factor analysis.   
 
2. Multivariate Distributions 
 
The multivariate normal distribution is the most widely used distribution in multivariate 
statistical inference. Some of its main properties are summarized in Section 2.1 where 
certain distributional results on quadratic forms in normal random vectors are also 
given. The normal distribution belongs to the more general class of elliptically 
contoured distributions which is described in Section 2.2. A brief definition of the 
Wishart distribution is given in Section 2.3.  
 
2.1 The Multivariate Normal Distribution 
 
A p-variate random vector X is said to have a real nonsingular normal distribution with 
mean μ  = E(X) and real positive definite covariance matrix Σ = E[(X – E(X)) (X – 
E(X))'], if its density function is given by 
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The notation X ~ Np (μ , Σ) will indicate that the p-variate random X  is normally 
distributed with the parameters μ and Σ. When μ= 0 (the null vector) and Σ = I (where I 
is a diagonal matrix whose diagonal elements are all equal to one), X is said to have a 
standard normal distribution. If the covariance matrix Σ of a random vector X is 
diagonal, then the components of X are independently distributed.  
 

Let 1

2
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X
 where X1 has q components and X2 has p–q components, and  X ~ Np 

(μ , Σ)  with 
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then  X1  and X2 are independently and normally distributed with means μ 1 and μ 2 and 
covariance matrices  Σ11  and  Σ22 , respectively, whenever  Σ12 = O  and   Σ21 = O,   O  
denoting the null matrix whose elements are all equal to zero.  Moreover, letting Y1  = 
X1   and Y2  = X2 – Σ21 Σ11

–1 X1, it can be shown that Y1  and  Y2  are independently 
distributed with Y1 ~ Nq (μ 1, Σ11)  and Y2 ~ Np-q (μ 2 – Σ21 Σ11

–1μ 1 , Σ22.1)  where  
Σ22.1 = Σ22  – Σ21 Σ11

–1 Σ12 . It follows that the conditional distribution of X2 given X1 = 
x1 is a multivariate normal with mean μ 2 + Σ21 Σ11

–1 (x1–μ 1) and covariance matrix  
Σ22.1 .  
 
Let A be a q × p matrix of rank q with  q × p , b be a q-dimensional vector of constants 
and  X ~ Np (μ , Σ) ,  then AX + b  ~ Nq (Aμ  + b, AΣA') . As an application, letting  p 

= q ,  A = 1/ 2−Σ  and b = − 1/ 2−Σ μ  where 1/ 2−Σ  denotes the symmetric square root of  
Σ–1,  one can standardize the vector X ~ Np (μ , Σ)  by means of the transformation 

1/ 2 ( )−= −Z Σ X μ , and then  Z ~ Np (0, I). When q=1 (the case of a linear combination 
of the components of X), one has  a'X ~ N (a'μ , a'Σa)  for any real vector a.  Moreover, 
if b'X is univariate normal for every real vector b, then X is distributed as a multivariate 
normal vector; this is a characterization of the multivariate normal distribution.  
 
If  Σ, the covariance matrix of X, has rank r p≤ , then one can write Σ = BB', where B 
is p × r. Whether Σ is singular or nonsingular,  there exists a standard normal vector Y ~ 
Nr(0, I) such that 
 
X = μ  + BY (2.1.2) 
 
In the singular normal case, the density of X does not exist but all the properties of X 
can be studied through the vector Y of (2.1.2). In the nonsingular case, the matrix B in 
(2.1.2) has dimension  p × p and is of rank p. 
 
The characteristic function of  X ~ Np (μ , Σ) is  
 

}2/)'('exp{})'(exp{)( ttμtXttX Σ−== iiEM     (2.1.3) 
 
 where t is a p-dimensional real vector  and  1−=i .   
 
 Quadratic Forms in Normal Vectors 
 
Consider the quadratic form X' BX  where X ~ Np (0, Σ) with Σ > 0 and B is a real 
symmetric matrix. Writing X  as  Σ1/2 Z  where Σ1/2   is such that Σ1/2 Σ1/2 = Σ and Z ~ 
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Np (0, I), one has X' BX = Z' (Σ1/2 B Σ1/2) Z . Let Q be an orthogonal matrix (with the 
property that Q'Q = QQ' = I) which diagonalizes Σ1/2 B Σ1/2. Then Q'(Σ1/2BΣ1/2)Q = Λ, 
where Λ is a diagonal matrix whose diagonal elements λi are the characteristic roots of  
Σ1/2 B Σ1/2, and  X'BX = Z' QΛQ' Z . Note that on letting W = Q' Z,  one has  W~ Np(0, 
Q'IQ) ~ Np (0, I). Thus, 
 

X' BX = W' ΛW  = ( W1  W2  …  Wp ) 
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where the Wi's are independent standard normal variables, that is, the quadratic form 
X'BX is distributed as a linear combination of independent chi-square variables each 
having one degree of freedom. 
 
We now state two basic results in connection with quadratic forms.  
 
1. Let X ~ Np (0, I);  then X'BX  ~  χ2

r  if and only if  B = B2 (that is, B is idempotent) 
and the rank of  B is r . 

2. Let Q1 = X'AX  and Q2 = X' BX  where X ~ Np (0, I) , A = A' and B = B' ; then Q1  
and Q2 are independently distributed if and only if  AB = BA = O  (Craig’s 
theorem). 

 
2.2. Elliptically Contoured Distributions  
 
We shall first present some of the main properties characterizing the class of elliptically 
contoured distributions via the multivariate normal distribution.  
 
Consider the equation f(x) = c1 where c1 is a constant and f(x) is the density function of 
a multivariate normal distribution given in Equation 2.1.1. Then 
 

1
1ln ( ) ln ( ) ' ( )f c c−− = − ⇒ − − =x x μ Σ x μ      (2.2.1) 

 
where c is a constant. Thus the contours of constant density are ellipsoids whenever X ~ 
Np (μ  , Σ) When μ= 0 and Σ = I, the identity matrix, these ellipsoids are spheres 
centered at the origin and X is said to have a spherical distribution. Moreover, the 
characteristic function of  Y ~ Np (0, I) as well that of Z = PY, where P is an orthogonal 
matrix, are one and the same, which means that there is invariance under orthogonal 
transformations. If the factor exp{ ( ' ) / 2}− t Σt  of (2.1.3) is replaced by a general 
nonnegative function of  t' Σ t , the resulting distribution is said to belong to the class of 
elliptically contoured distributions. Elliptically contoured and spherical distributions are 
formally defined below. 
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Let μ  be a p-dimensional real vector, Σ be a p × p nonnegative definite matrix and ξ(.) 
be a nonnegative function; then the p-dimensional vector X is said to have an elliptical 
or elliptically contoured distribution if its characteristic function φ(t) can be expressed 
as exp( ' ) ( ' )i ξt μ t Σt , and we write X ∼ Cp (ξ ;μ , Σ). If some components of t in the 
characteristic function of X are set to zero, the resulting characteristic function still has 
the same form, which means that if X has an elliptically contoured distribution then all 
the marginal distributions are also elliptical. When μ  is the null vector and Σ is the 
identity matrix of order p, the notation X ~ Cp (ξ ;μ , Σ) is shortened to X ~ Sp (ξ ) , and 
X is said to have a spherical or spherically symmetric distribution.  
 
Let Y be spherically distributed with p.d.f. g(y'y) and  X  be distributed as μ  + BY 
where μ  is a p-dimensional vector and B is a p× p matrix such that Σ = BB' ; then X has 

the p.d.f. 1/ 2 1| | [( ) ' ( )].g− −− −Σ x μ Σ x μ  Clearly, the contours of constant density of X 
are ellipsoids as in the multivariate normal case. 
 
Elliptically contoured distributions can also be defined as follows: Let Σ be p × p matrix 
of rank    q ≤ p ; then there exists a q × p matrix L such that Σ = L'L. Now, letting W be 
a nonnegative random variable which is identically distributed in every direction along 
radii from the point μ  and U(α) denote a random vector which is uniformly distributed 
on the unit sphere in ℜα and whose distribution is independent of that of  W,  one has X 
~ Cp (ξ ; μ , Σ) if and only if X ~μ+L' W U(q) and F(w), the distribution function of W, 
is such that 
 

)(})'(exp{})]'(exp{[)'(
0

)()(
|)( wdFiwEwiEE qq

wWW q ∫
∞

=
== UtUttt

U
ξ  

 
where ξ (t' t) is the characteristic function of  WU(q) ~ Sq (ξ ). 
 
2.3 The Wishart Distribution 
 
Letting X1 , X2 ,…, Xn  be a random sample of size n from a Np (0, Σ) population,  
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the random matrix A  is said to follow a Wishart distribution with  n  degrees of 
freedom and covariance parameter Σ , and we write  A ~ Wp (n , Σ).  
  
3. Parameter Estimation for a Multivariate Normal Population 
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A multivariate normal vector X ~ Np (μ , Σ) is specified completely by its mean μ  and  
covariance matrix Σ. Given a random sample X1 , X2 ,…, XN  with N > p from this 
distribution, the maximum likelihood estimators of μ  and Σ  are obtained by 
maximizing the likelihood function  of the sample, which is  

1

1
/ 2 / 2

1exp{ tr( [ ( )( ) '])}
2

(2 ) | |

N

i i
i

pN Nπ

−

=
− − −∑Σ x μ x μ

Σ
 . 

 
They are respectively  
 

 
1

1ˆ
N

i
iN =

= = ∑μ X X    and    
1

1ˆ ( )( ) '
N

i i
iN =

= − −∑Σ X X X X  . 

 
The sample mean X  is normally distributed as Np (μ , Σ/N) , and so N( X – μ )' Σ-1 ( X – 
μ ) has a chi-square distribution with p degrees of freedom.  It can also be shown that 
N Σ̂  is distributed as ∑ −

=

1

1

N

i
Zi Zi' where the Zi’s are independently distributed as Np(0, 

Σ), i = 1, 2 ,…, N–1. Consequently, letting the sample covariance S = 

1
( )( ) '/( 1)

N

i i
i

N
=

− − −∑ X X X X  , (N – 1)S = N Σ̂  is seen to be distributed as a Wishart 

random matrix with (N – 1) degrees of freedom. The estimators X  and S are 
independently distributed and respectively unbiased for μ  and  Σ . 
 
4. Tests of Hypotheses for Mean Vectors and Covariance Matrices 
 
Some useful test statistics for the mean vectors and covariance matrices of multivariate 
normal populations are enumerated below. 
 
1.  Testing that a mean is equal to a given vector when the covariance matrix is known. 
Let  X1 , … , XN  be  a random sample from Np (μ , Σ)  and Σ be a known covariance 
matrix; then a rejection region of size α to test the hypothesis μ=μ 0 , where μ 0  is a 
specified vector, is given by 
 
N( X – μ 0)' Σ–1 ( X – μ 0) > χp

2(α) 
 
where  χp

2(α) is a critical value such that P[χp
2 > χp

2(α)] = α , and  a  100 (1 – α)% 
confidence region for the mean vector μ  is specified by the set of points m satisfying 
the following inequality: 
 
N( X – m)' Σ–1 ( X – m)  ≤ χp

2(α) . 
 
2. Testing equality of the mean vectors in two populations with known common 
covariance matrix. 
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Let X1 , … , XN    and Y1 , …  , YM  be  random samples from Np (μ (1), Σ) and Np (μ (2), 
Σ) , respectively, with sample means X  and Y , and assume that Σ is known. Then, 
( X – Y ) is  distributed as  
Np (μ (1) – μ (2) , [(1/N) + (1/M)]Σ) 
 
and a rejection region for testing the hypothesis μ (1) = μ (2), is given by 
 

MN
NM
+

( X  – Y )' Σ–1   ( X – Y ) > χp
2(α) . 

 
3.  Testing that a mean is equal to a given vector when the covariance matrix is 
unknown  
 
The likelihood ratio test of the hypothesis μ  = μ 0 for a Np (μ , Σ) population is based 
on T2 = N( X – μ 0)' S–1 ( X – μ 0 ) ,  where X  and S are respectively the sample mean 
and the sample covariance. A 100 (1 - α)% confidence region for the mean vector μ  is 
given by 
 

N( X –  m)' S–1 ( X – m ) ≤ 
)(

)1(
pN

pN
−
−  Fp, N – p (α)                                 

 
as an inequality with respect to m where Fp, N – p (α)  is such that P(Fp, N – p > Fp, N – p 
(α) ) = α ,     Fp, N – p denoting the F distribution with p and N – p degrees of freedom. 
 
4.  Testing equality of means in two populations with unknown common covariance 
matrix  
 
Let  X1 , … , XN  and Y1 , … , YM  be  random samples from Np (μ (1), Σ) and Np (μ (2), 
Σ) , respectively,  Σ being unknown,  T2  =  NM ( X  – Y )' S–1 ( X – Y )/(N+M) , and 

S =
⎭
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. A rejection region for 

testing the hypothesis μ (1) = μ (2) , is given by 
 

T2  > 
MN

pmN
+

−+ )2(  Fp, N + M – p – 1(α) . 

 
5. Testing the hypothesis that a mean vector and a covariance matrix are equal to a 
given vector and matrix.   
 
Let  X1 , X2 , … , XN  be a random sample from Np (μ , Σ)  where Σ is positive definite 
covariance matrix.  The likelihood ratio criterion for testing the hypothesis  H0: μ  = μ 0,   
Σ = Σ0 , where μ 0  and Σ0  are given, is 
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i
i . Under the null hypothesis, – 2log λ is asymptotically 

distributed as a chi-square random variable with  p(p + 1)/2 +  p degrees of freedom. 
 
6. Testing the hypothesis that a covariance matrix is equal to a given matrix.  
 
Let  X1 , X2 , … , XN  be  a random sample from Np (μ , Σ)  where Σ is a positive 
definite covariance matrix.  The likelihood ratio criterion for testing the hypothesis  H0: 
Σ = Σ0  , where Σ0   is a  given covariance matrix, is 
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where A = 
1

) 'i i
i=

− −∑
N

(X X)(X X . Under the null hypothesis, – 2log λ is asymptotically 

distributed as a chi-square random variable with   p(p + 1)/2  degrees of freedom. 
 
7.   Testing the hypothesis that a covariance matrix is proportional to an identity matrix.  
 
Let  X1 , X2 , … , XN  be  a random sample from Np (μ , Σ)  where Σ is a positive 
definite covariance matrix.  The likelihood ratio criterion for testing the hypothesis  H0: 
Σ = σ2 I , where σ2    is not specified , is 
 

1
2

1
2

| |

(tr( ) / )

N

pN
p

λ =
A

A

 

 

where A = )'()(
1

XXXX −−∑
=

i

N

i
i . Under the null hypothesis, – 2log λ is asymptotically 

distributed as a chi-square random variable with p(p + 1)/2 – p degrees of freedom. This 
test is called the sphericity test. It determines whether the components of a random 
vector are uncorrelated and they all have equal variances. 
 
 
 
- 
- 
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