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Summary 
 
In real decision situations a decision maker (DM) is often confronted with the problem 
that the information which is necessary for constructing a classical decision model is not 
available, or the cost for getting this information seems too high. Subsequently, the DM 
abstains from constructing a decision model; the DM fears that this model is not an 
authentic image of the real problem. Fuzzy set theory offers the possibility to construct 
decision models with vague data. Many decision models with fuzzy components are 
proposed in literature, but only fuzzy consequences and fuzzy probabilities are 
important for practical applications. Therefore, the focus of this paper is concentrated on 
these subjects. It is shown that the principle of Bernoulli can easily be extended to 
decision models with fuzzy utilities. Furthermore it is possible to use additional 
information in order to improve the prior probabilities. Moreover, fuzzy probabilities 
can be used combined with crisp utilities, described by real numbers, or fuzzy utilities. 
Apart from the fact that fuzzy models offer a more realistic modeling of decision 
situations, the proposed interactive solution process leads to a reduction of information 
costs. That circumstance is caused by the fact that additional information is gathered in 
correspondence with the requirements and under consideration of cost–benefit relations. 
 
1. Classical Decision Model 

Looking at modern theories in management science and business administration, one 
recognizes that the majority of these conceptions are based on decision theory in the 
sense of von Neumann and Morgenstern. However, empirical surveys reveal that 
decision models are hardly used in practice to solve real-life problems. This neglect of 
recognized classical decision concepts may be caused by the fact that the information 
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necessary for modeling a real decision problem is not available, or the cost for getting 
this information seems too high. 

In order to design a decision problem by classical decision models, the decision maker 
(DM) must be able to specify the following elements: 

1. A set A of actions, 1 2{ , , , }mA a a a= … , 
2. A set S of possible events, 1 2{ , , , }nS s s s= … ,  
3. A result associated with each act-event combination, 
 ( , ) , 1, 2, , ; 1, 2, ,ij i jg g a s i m j n= = =… … . G is the set of possible 

values ijg . 
4. The degree of knowledge with regard to the chance of occurrence of each 

event. Usually it is assumed that the DM knows the probability 
distribution ( )jp s . 

5. A criterion by which a course of action is selected: 
 In literature, the Bernoulli-criterion is recommended, i.e. the expected utility 

should be maximized: 

1
( *) max ( ) max ( ( , )) ( )

i i

n

i i j j
a A a A j

E a E a u g a s p s
∈ ∈ =

= = ⋅∑            (1) 

6. A posteriori probability distribution: 
 

 In classical decision models the only chance for getting a better solution is to 
use additional information 1 2{ , , , }KX x x x= … . Knowing the 
likelihoods ( | )k jp x s , the priori probability distribution ( )jp s  can be 
substituted by the posteriori probability distribution 

1

( | ) ( )
( | )

( ) ( )

k j j
j k n

k j j
j

p x s p s
p s x

p x s p s
=

⋅
=

⋅∑
   Bayes’s formula           (2) 

With the additional information that kx  is observed the optimal action * ( )ka x satisfies 
the term 

1
( *( )) max ( ( , )) ( | )

i

n

k i j j k
a A j

E a x u g a s p s x
∈ =

= ⋅∑ . 

The expected value of additional information is 
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1
( ) ( * ( )) ( ) ( *)

K

k k
k

E X E a x p x E A
=

= ⋅ −∑ . 

Therefore, additional information should be used if the costs for getting this information 
are smaller than E(X). (See Decision Making under Risk and Uncertainty, Decision 
Problems and Decision Models.) 

2. Basic Definitions of the Fuzzy Set Theory 

The foundations for the fuzzy set theory were laid by Lotfi A. Zadeh in his paper Fuzzy 
Sets. It is the most important contribution to “fuzzy” literature and the publication date 
1965 marked the birth of the new mathematical discipline, the fuzzy set theory. 

By means of the fuzzy set theory, more realistic mathematical models can be designed 
for real-world problems. Therefore this new theory has also been considered as a new 
way of modeling decision models. For presenting these new instruments some basic 
definitions are necessary. 

A fuzzy set is a generalization of the classical notion of a set in the sense of Cantor: “A 
set is defined as the combination of special well distinguished objects of our recognition 
or our thinking as a whole.” 

The classic set is strongly limited. According to the two-valued logic, which only allows 
Yes/No-statements, each object has to be either an element of the set or not. This strong 
delimitation of a set, which is characterized as “crisp set,” quite often causes difficulties 
in the case of application to real problems, as shown by the following example: 

Among a set of people joining a family meeting we have to choose the subset A of 
“young men.” If one of the persons present should choose the set A, it would be easy for 
that person to describe some persons as elements of A and others as not belonging to 
this group. But there would also be borderline cases where the membership is not 
obvious. 

According to Zadeh for each element x of a universe set X, the grade of membership of 
a fuzzy subset Ã could be expressed as a set of ordered pairs {( , ( )) }AA x x x Xμ= ∈�� , 
where the membership function is defined as : [0 , 1]A Xμ →� . 

Similar to the definition of Cantor, the functional value 0 is given to objects which 
definitely do not show the requested attributes. 

If the value set [0,1]  implies that objects with the membership value 1 definitely belong 
to the required set, Zadeh’s concept of a fuzzy set is directly an extension of the set 
definition by Cantor, where the value set is limited on the set {0, 1}. Sets in the sense of 
Cantor are called crisp sets. 
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The use of a numeric scale like the interval [0,1]  provides a simple and clear 
presentation of the membership degrees. In order to avoid misinterpretation it is 
necessary to emphasize that the membership values are always the expression of the 
personal estimation of single persons or groups. In case of the example above, a 30-
year-old woman will most probably fix other membership degrees than an 80-year-old 
man. Furthermore the membership values also depend on the universe set X. 

Figure 1 shows a membership function of the fuzzy set “young men” based on an 
opinion poll among students of the RWTH Aachen. The membership function in Figure 
1 is an continuous approximation to the observed points (age; number of nomination in 
relation to the maximal nomination of an age). Here the universe set is [0, 100], where 
the opinion poll was restricted to integer numbers. 

 
 

Figure 1. Membership function of the fuzzy set “young men” 

According to the definition, a membership function Aμ �  maps the universe set X in the 

interval [ ]0, 1  but not necessarily on the interval [ ]0, 1 . Since many applications for 
fuzzy sets are only useful, if the all membership functions have the same value set, it is 
required that all fuzzy sets are normalized by dividing its membership function Aμ �  by 

( )xSup Ax X
μ

∈
� . 

For describing subsets, it is often sufficient to look at the elements of X with positive 
membership degrees. The support (set) supp (Ã) = { ( ) 0}Ax X xμ∈ >�  is a crisp 
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subset of X. In the special case that A�  is a crisp set then supp (Ã) = 
{ ( ) 1}Ax X xμ∈ =�  

Analogously to the support, additional crisp sets may be used for describing fuzzy sets. 
For a given membership degree, the α-level set or α-cut of a fuzzy set A�  is defined as: 

{ | ( ) }AA x X xα μ α= ∈ ≥�  where [0,1]α ∈ . The importance of the α-cuts is obvious in 

the representation theorem; it says that a fuzzy set A�  is completely characterized by the 
accompanying family of α-level-sets because the membership function of A�  can be 
written as 

( ) sup{ [0,1]| }A x x Aαμ α= ∈ ∈�            (3) 

Therefore, an approximation of a fuzzy set can be constructed by using few α-cuts; see 
the construction of fuzzy intervals of the ε-λ-type in section 3. 

Though the concept of fuzzy sets offers the possibility of describing the membership 
function of a fuzzy set in some detail, this is almost impossible in practical use and 
requires immense investigations. Therefore, the membership functions used in practice 
are in general a rough description of the subjective imagination. Quite often simple 
kinds of functions are used and special kinds of fuzzy sets are applied, namely fuzzy 
numbers and fuzzy intervals, which are directly the extension of the crisp terms (see 
Figure 2). 

A fuzzy number is a convex normalized fuzzy set A� on the real line R such that 

1. there exist exactly one real number x with a membership degree ( ) 1 ,A xμ =�  
2. ( )A xμ �  is piecewise continuous in R . 

Thereby, a fuzzy set A�  on a convex set X is called convex, if 

1 2 1 2

1 2

( (1 ) ) ( ( ) , ( )),
, , [0, 1]

A A Ax x Min x x
x x X

μ λ λ μ μ

λ

+ − ≥

∈ ∈
� � �            (4) 

This characteristic has the consequence that all α-cuts Aα  are crisp intervals on R. 

Fuzzy intervals are extensions of fuzzy numbers where the 1-cuts are not restricted to 
one point but are extended to crisp intervals. 

Figure 2 presents two examples for describing “approximately 8.” As the membership 
function ( )B xμ �  resembles a triangle, this special fuzzy set is called triangular fuzzy 
number. 
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Figure 2. Membership functions of the fuzzy set “approximately 8” 
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