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Summary 
 
The phylogeny of extremophiles and the origin of life are closely related and highly 
controversial topics. In this essay, we critically review the "classical" model, which 
presents the universal tree of life rooted in the bacterial branch and emerging from a 
prokaryote-like, hyperthermophilic, last common ancestor (LCA). Our conclusion is 
that there is no firm bedrock on which to build such a vision and that another model can 
account for the emergence of life and of extremophiles. We present the arguments 
supporting the concept of a protoeukaryotic, genetically redundant, promiscuous, and 
non hyperthermophilic LCA, endowed with sn-1, 2 glycerol ester lipids, from which the 
primordial and hyperthermophilic Archaea emerged by a reductive process implying the 
advent of sn- 2, 3 glycerol ether lipids. Bacteria emerged independently from the LCA 
by reductive evolution; the presence of different types of membrane lipids in 
independent lines of thermophilic bacteria suggests they adapted to high temperatures 
by convergent processes; some bacterial hyperthermophilic traitsmay have been 
acquired from Archaea.. The cardinal characteristics of piezophiles, psychrophiles, and 
extreme halophiles are briefly reviewed. In our present state of knowledge, adaptations 
to low temperature (psychrophily) appears secondary in Archaea; extreme halophily 
also seems to be a characteristic acquired by a branch of Archaea. Thorough analyses of 
proteins from abyssal organisms will be necessary to determine whether primordial 
forms of life were piezophilic (adapted to high pressure). A large number of extreme 
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biotopes (some of them difficult of access) remain to be investigated to make the tree of 
life more representative of biodiversity. 
 
1. Introduction 
 
The notion of "extremophile" covers a large variety of organisms which all share one 
common property: they are adapted to at least one of the conditions, which seem to 
stretch the adaptive capacity of life to a limit. The anthropomorphic undertone of this 
concept becomes clear when one realizes that any extremophile is actually restricted to 
an environment characterized by an "extreme" parameter, whether the temperature, an 
elevated hydrostatic pressure, an extreme pH, or high salinity. Adaptations to these 
various types of extremes raise questions of very different scopes. Earth is a cold planet; 
the portion of the biosphere above the surface of the crust is mainly oceanic, 62% of it 
below 1000 m, and thus under 5 °C, barring a few exceptions. Psychrophily (adaptation 
to cold) is therefore "extreme" only in the sense that it characterizes organisms thriving 
just above the freezing point of water, a natural temperature limit for growing cells (we 
are of course considering only organisms devoid of thermoregulation). Psychrophily is, 
however, not restrictive in terms of biodiversity since psychrophiles comprise a large 
variety of prokaryotes and eukaryotes. The same is true for piezophily (adaptation to 
high pressure) which also characterizes the largest part of the biosphere. 
 
By contrast with low temperature and high pressure, elevated temperature (i.e., close to 
or higher than the boiling point of water), and high or low pH, as well as high salinity, 
not only mark the end of a range compatible with life but also correspond to a drastic 
decrease in biodiversity, with a marked preponderance of prokaryotes. Nevertheless, 
except for high temperature, which above 62 °C selects only for prokaryotes, extremes 
of pH may accommodate eukaryotes (even small invertebrates in the case of high pH) 
and some environments of high salinity are host to algae and protozoa. We will however 
limit ourselves to prokaryotes. The main reasons for this choice are the preponderance 
of prokaryotes among extremophiles and the close connections between three topics: the 
emergence of hyperthermophily, the origin of life and the nature of the last ancestor 
common to all inhabitants of this planet 
 
Treating the phylogeny of extremophiles as a topic implies there are reasons to think 
these organisms occupy singular positions in the genealogy of life. From the 
evolutionary point of view, we must, however, distinguish pervasive environmental 
factors—which select for concerted adaptation of all cellular functions and are the only 
ones we will consider here—from those involving a more limited register. Temperature 
and pressure obviously belong to the first category, in contrast to high or low pH, since 
most alkaliphiles and acidophiles maintain an intracellular pH not far from neutrality. 
Only in the extreme case of the thermoacidophilic archaeon Picrophilus oshimae, which 
grows fastest at pH 0.7, does the intracellular pH fall to 4.6, whereas it can reach 9.5 in 
some extreme alkaliphilic Archaea; these values are probably close to the limits 
compatible with function and stability of cellular macromolecules. Very high salinity 
also selects for global adaptation of cellular functions because of the extensive 
intracellular accumulation of inorganic ions (mostly K+) necessary to achieve osmotic 
balance between the cell and the environment; as a result, enzymes from extreme 
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halophiles often require high ionic strength for function in contrast to the homologous 
proteins from less demanding halophiles such as marine bacteria. 
 
Until the beginning of the twenty-first century, much more attention has been devoted to 
the origin of thermophily than psychrophily, piezophily, or halophily. This is mainly for 
historical reasons. When the comparative analysis of small subunit (SSU) ribosomal (r) 
RNA revolutionized microbiology by bringing to light a third domain of organisms—
the Archaea—it also revealed that the most ancient lines of descent in both prokaryotic 
divisions (Archaea and Bacteria) consisted of hyperthermophilic organisms. On the 
other hand, no eukaryotes were found able to multiply above 62 °C; a statement that 
remains valid in spite of extensive screening. When a few years later the tree of life was 
rooted in the bacterial branch by computer analysis of two sets of paralogous proteins 
(see Section 2.2), many biologists assumed that the last common ancestor of the three 
domains (the LCA) had been a prokaryote-like, hyperthermophilic organism and that 
life itself originated at high temperature. It follows that key issues about the phylogeny 
of extremophiles are the origin of extreme thermophily and to what extent, if at all, the 
thermal regime of the LCA and the temperature of the cradle of life are related 
questions. 
 
2. The Structure of the Tree of Life 

2.1. The Last Common Ancestor (LCA) and the Three Domains 

Central to all discussions on the phylogeny of living organisms is the concept of a "last 
universal common ancestor" (LUCA or LCA) for Archaea, Bacteria, and Eukarya. The 
existence of this mythical entity, the very concept of which can be traced back to 
Darwin himself, seems legitimized by the occurrence of families of homologous 
proteins across the three domains, the general unity of biochemistry in terms of basic 
metabolic and energetic processes, the near-universality of the genetic code and the 
argument that, even if terrestrial life knew several attempts, all but one is expected to 
have survived natural selection so as to dominate the whole planet. None of these 
arguments is compelling, however; it was argued that catalytic and autoreplicative 
polymers not identical to contemporary nucleic acids or even totally unrelated may have 
preceded them and provided a molecular scaffold for their assembly; the most extreme 
form of this hypothesis, formulated by Cairns-Smith, presented clays as "the first 
organisms." In this view, the advent of nucleic acids as depository for genetic 
information is not the only possible outcome. Other forms of life may thus exist which 
would not be detected by probing with standard oligonucleotides. Moreover, within the 
framework of nucleic acids themselves, it is not known whether the genetic code as we 
know it is the only possible one or a "frozen accident." In terms of mechanisms of 
enzymatic catalysis, we will probably not know what can be ascribed to chance rather 
than necessity before having discovered at least one other example of life based on 
carbon chemistry. However, these reservations concern more the origin of life itself than 
the origin of extant biodiversity. We will, therefore, keep the advent and the 
diversification of a LCA as the best working hypothesis to discuss the issues raised in 
the Introduction. 
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C.Woese chose the small subunit (SSU) of ribosomal RNA (rRNA), usually designated 
by its sedimentation coefficient in Svedberg (S) units (16SrRNA in prokaryotes, 
18SrRNA in eukaryotes), to probe deep evolutionary kinships between extant 
organisms; indeed, this component is universal and exerts such a central and basic 
function that it is not exposed to the relentless and highly variable selective pressure 
operating at the level of more peripheral functions. It was thus thought to provide the 
best possible molecular clock. Moreover, it was argued that the functional connections 
between SSUrRNA and other non dispensable ribosomal macromolecules should confer 
it a relative immunity to lateral gene transfer (LGT), a phenomenon prone to blur 
phylogenetic relationships. This concept was extended towards those cellular functions 
which can be qualified as "informational" rather than "operational" (the "complexity" 
hypothesis of Jain, Rivera, and Lake). As a matter of fact, recent studies suggested that 
rRNA may have been exchanged in nature between closely related organisms and an 
experimental analysis published by T. Asai, D. Zaporojets, C.Squires and C.L. Squires 
in 1999 even showed that such an exchange was possible between E. coli and 
Salmonella typhimurium without noticeable loss of viability or efficiency in protein 
synthesis whereas chimeras consisting of E.coli and yeast rRNA were much less 
efficient than either of the parental molecules. Keeping these facts in mind, genealogies 
based on the comparative analysis of SSUrRNA molecules nevertheless remain today 
our best reference to discuss the "anomalies" that were found to abound in phylogenetic 
trees based on comparisons of amino acid sequences. 
 
The concept of a neat distinction between three domains indeed came under fire when it 
was realized that protein sequence trees often did not match the tree derived from 
SSUrRNA sequences. Such protein trees can not be represented by vertical lines of 
descent because they are polyphyletic: some bacterial genes look like archaeal or 
eukaryotic ones or vice versa. The most popular hypothesis to explain such 
discrepancies between SSUrRNA and protein trees has been and remains lateral (i.e., 
horizontal) gene transfer (LGT) between distantly related organisms. Despite the fact 
that most of these analyses were purely statistical and thus exposed to a variety of 
artefacts, this concept of wide-ranging, interdomain, LGT was used by Martin and 
Doolittle to propose that the genealogy of life is not a tree but a net within which a clean 
branching out of separate domains can not be defined. At the end of the year 2000, we 
reviewed the evidence interpreted in this way and had to conclude that, in most cases of 
alleged LGT, even among prokaryotes, alternative interpretations had been neglected. 
Of course, the transfer of some bacterial genes to eukaryotic genomes is in keeping with 
the symbiotic origin of mitochondria and chloroplasts. 
 
Besides statistical artefacts stemming from annotation errors, from differences in 
guanosine-cytosine genome contents or from variations in evolutionary rates between 
organisms and between genes, one explanation stands out as an alternative to LGT 
because it gives a less ad hoc account of apparent polyphyly. To have been capable of 
evolving towards an advanced cellular stage, the LCA must have been a genetically 
redundant organism. This redundancy would have been dynamic if frequent exchanges 
or fusion events took place between LCA cells as Woese himself proposed; such events 
would have been facilitated if those primordial cells had not yet developed structured 
cell walls. Furthermore, to have engendered the metabolic diversity displayed by 
microbial life this LCA population was probably highly heterogeneous. One could 
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therefore predict that the ancestors of each of the three domains possessed at least two 
copies of many, perhaps most of their genes. Later on, in the course of the progressive 
differentiation of each domain into different branches, haphazard loss of one of the 
paralogous copies would have generated a totally unpredictable polyphyletic pattern. A 
striking example of this—but by no means an isolated one—is the phylogenetic analysis 
by Labedan and his colleagues of the carbamoyltransferases involved in arginine and 
pyrimidine biosynthesis. 
 
This type of explanation avoids the difficulties arising at each of the steps involved in 
putative gene transfer between domains; indeed, for most of the phylogenetic 
discrepancies where LGT was invoked, no other selective drive could be proposed for 
the acquisition of the putative foreign gene than the complementation of defective 
mutants (except, maybe, for the emergence of thermophilic bacteria as discussed in 
Sections 4 and 5).Yet, a gene damaged by mutation is much more likely to be replaced 
by an intact exemplar from cells of the same species or from a closely related one 
sharing the same ecology. Moreover, to produce lasting results, LGT requires 
replication, maintenance, and efficient expression of the transferred gene, which in the 
case of interdomain transfer means cumulating all possible difficulties. We are certainly 
not denying evidence for LGT within the same species (this has been amply 
demonstrated for Escherichia coli by Radman and his colleagues), or among closely 
related organisms (such as Thermococcus and Pyrococcus ) or even between relatively 
distant members of a large group such as the Proteobacteria (alias Gram-negative 
bacteria) where arguments independent from statistics (presence of transposons, 
integrons, gene islands, presence or absence of whole sets of genes in different strains of 
the same species, especially pathogens) actually highlight the importance of LGT in 
speciation, but we consider that the case for interdomain transfer is rather weak; this 
holds also for tRNA synthetases in spite of the reputation of promiscuity they have 
gained from pure statistics. Moreover, inferring the incidence of interdomain transfer 
from the probable frequency of foreign (but nevertheless mostly bacterial-like) genes 
hosted by E. coli is highly misleading. Besides, it should be noted that comparative 
analysis of whole proteomes and phylogenetic analysis based on gene sharing rather 
than sequence identity did not suggest that extensive LGT ever took place between 
domains. Finally, incorrect assumptions were occasionally made to reject differential 
loss of paralogues as an explanation for lack of monophyly. For example, when 
paralogous copies of a gene were found in different but connected radiations of a 
particular group, it was inferred that an organism appearing ancestral in the genealogy 
could still possess both copies; this reasoning does not take into account that the only 
organisms we can look at are contemporary and may have suffered gene losses as well. 
Therefore, not finding the two copies in an "earlier" branch is unconclusive. 
 
Others, such as Eisen and Sicheritz-Ponten, also criticized recently the systematic 
application of the LGT concept among microorganisms. As far as eukaryotes are 
concerned, the symbiotic origin of mitochondria and chloroplasts is of course 
compatible with the notion of gene transfer from the prokaryotic ancestors of these 
organelles towards the nucleus; it was even proposed by Doolittle that the phagocytic 
nutrition of animal cells may have led to the incorporation of bacterial genes into the 
nucleus of the feeding cell. However, Salzberg recently questioned the identification of 
numerous genes of putative bacterial origin in the human genome and stressed the 
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purely statistical nature of most of these identifications to the detriment of other 
explanations. 
 

 

 
 

Figure 1. An early, still-unrooted version of the SSUrRNA distance tree 
 

 
 

Figure 2. Unrooted SSUrRNA tree of the prokaryotes based on organisms whose full 
genomic sequence is known or being completed Extremophiles (thermophiles, 

psychrophiles, halophiles) are in bold type. Bacteria contrast with Archaea by their long, 
deep, and poorly resolved branches. A more radical version of bacterial phylogeny is 

given in Figure 6.  
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Adapted from Nelson K.E., Paulsen I.T., Heidelberg J.F., and Fraser C.M. 2000. Status 
of genome projects for nonpathogenic bacteria and archaea. Nature Biotechnology 18, 

1049–1054. 
 

At this stage, we therefore conclude that the existence of the three domains of life 
(Archaea, Bacteria, Eukarya) appears legitimized by the systematic differences brought 
to light in their respective SSUsRNA sequences and that this discovery will remain a 
milestone in the history of biology. Even though phylogenies based on rRNA are not 
immune to statistical artefacts and leaves some basic branchings unresolved particularly 
among Bacteria and early Eukarya, the coherence of this new systematics is supported 
by the host of correlations that confers to each of the three domains a distinctive label. 
In its unrooted form (Figures 1 and 2) the three-domain tree emphasizes this distinctness 
but also draws attention to the relative dwarfness of the archaeal bush; short branches 
indicate slow evolutionary rates. In particular, the relatively high GC content necessary 
to stabilize rRNA in hyperthermophiles (which constitute all ancient archaeal lines of 
descent) reduces the number of possible nucleotide substitutions in these molecules and 
therefore slows down their evolutionary rate. 
- 
- 
- 
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