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Summary 
 
Properties like color, melting point, ionization potential and electron affinity, electrical 
conductivity, or magnetism which for bulk amounts of matter do not depend on size 
become size-dependent when the size of a particle falls in at least one dimension below 
a certain limit, which is normally taken to be about 100 nm. On this basis, the properties 
of matter can be tuned to their desired values by adjusting the size of nanoparticles and 
the thickness of thin layers or wires. For chemists this is particularly important in 
catalysis.  
 
1. Introduction  
 
Nanotechnology and nanomaterials are expressions which have received enormous 
publicity in recent years. In general, nanotechnology is the word used for the 
manipulation of individual objects on an atomic or molecular scale or for nanostructures 
produced by lithographic techniques, while nanomaterials are nanoscale particles which 
can be produced by chemical synthesis and handled in masses. In both cases it is the 
special properties, different from those in the bulk, which causes the excitement.  
 
Nanomaterials are often considered to be an invention of modern science, but in fact 
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they have always existed, and humans have been exposed to them, for example in the 
smoke of open fires, or in the form of viruses. More than two millennia ago, artisans of 
the Roman Empire started to make use of nanoparticles by embedding colloidal metal 
particles into glass items to provide them with particular color. A well-known example 
is the Lycurgus Cup, depicting a scene of a Thracian king named Lycurgus who lived 
around 800 B.C. It was probably made in Rome in the 4th century B.C. The cup which is 
now on display in the British Museum in London changes color when held up against 
light. This is due to the special properties of the colloidal silver and gold nanoparticles. 
In the middle ages colloidal gold was also used in stained glass windows of churches.  
  
Recognition of size effects started 1871 with William Thomson (knighted to Baron 
Kelvin of Largs) when he described the size-dependence of the melting point of small 
particles or of pore-confined matter, a relation known as the Gibbs-Thomson equation. 
It combines the Clausius-Clapeyron equation for the temperature-pressure relation of 
phase transition equilibria with the Kelvin equation that describes the dependence of the 
vapor pressure of a small droplet on its radius.  
 
During the 20th century there have been two key events which have had enormous 
initiation effects on the development of nanotechnology and the application to 
nanomaterials. The first one was the famous lecture by the theoretical physicist Richard 
Feynman entitled “There is plenty of room at the bottom – an invitation to enter a new 
field of physics” in which he addressed the American Physical Society in its annual 
meeting on 29th December 1959. Not much happened thereafter until the second event 
took place, which is the development of the scanning tunneling microscope in the early 
1980s by Binnig and Rohrer, and somewhat later the atomic force microscope. They 
provided atomic resolution, three orders of magnitude better than the diffraction limit of 
optical microscopes, which more than fulfilled Feynman’s request to make the electron 
microscope 100 times better.  
 
Today there are many existing and planned applications which make use of nanosize 
effects intentionally. These range from catalysis over energy-related materials (solar 
cells, fuel cells, batteries, and hydrogen storage), nanomagnets and transistors (or other 
elements for electronics) to quantum dots where individual bits can be stored for 
quantum computing.  
 
When asked about the reason for the hype for nanomaterials some people might answer 
that certain phenomena like for example catalysis take place at the surface, and that all 
catalyst atoms which are not exposed to the surface are inactive and therefore wasted, 
which is economically important when the catalyst is an expensive metal like platinum 
or rhodium. This answer is not wrong, but it misses the main point by far. The important 
fact is that an atom at the surface of a small catalyst particle has properties quite 
different from those of the same atom at the surface of a large particle. Even a corner or 
edge atom is chemically different from an atom embedded in the middle of a surface 
face or an atom sitting on top of the same crystal face.  
 
It turns out that size effects have two origins: they are either surface effects or quantum 
confinement effects. The surface effect reflects that the stabilization of an atom in a 
solid or liquid environment scales with the number of neighbors to which it can make 
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bonds. The temperature of melting or of any other phase transition relates to this 
stabilization and therefore to the average number of neighbors. This leads to a smooth 
scaling law of transition temperature with particle radius or thickness of a layer or wire. 
The second effect applies only to conducting (metallic) or semiconducting materials. It 
is a quantum-size effect that depends on the wavelengths of standing waves that can be 
matched to particles of a certain size. In the same sense as for atoms or molecules this 
leads to discrete (quantized) energy states, and for sufficiently small dimensions this 
causes non-continuous scaling. The consequence of these two effects is that many 
properties of nanomaterials which for macroscopic particles are independent of size can 
be tuned to a very significant amount by adjusting the particle size. Perhaps the most 
striking example is that of gold, which is essentially not catalytically active at the 
surface of the bulk metal, but catalysis by gold nanoparticles works very well and has 
become a topic of very active research. Size effects are the basis for the new chemistry 
that will be in the focus of the present chapter.  
 
2. Surface Effects and Quantum Confinement Effects  
 
The dispersion F  of a sample is defined as the fraction or percentage of atoms at a 
surface, relative to the total number of atoms in the sample. The surface area of a 
sphere, 24A rπ= , divided by its volume, 34 / 3V rπ= , is 3 / r , or in terms of diameter 
d , 6 / d . Neglecting edge effects, the /F A V=  for large, thin plates of thickness d  
equals 1/ d , and also for long, cylindrical wires 1/F d= . Thus, for any body where a 
single narrow thickness d  is defined the dispersion scales smoothly with 1/ d . This is 
the basis for the explanation of many observed properties which scale smoothly as 1/ d  
or 1/ r , indicating that it is a surface effect.  
 
The above scaling law extrapolates to infinity as d  goes to zero, which is unphysical. 
When the diameter of a specimen reaches the diameter of two atoms, every atom is 
directly exposed to the surface, and 1F = . This is illustrated in Figure 1 for the example 
of cubic crystals with n  atoms along an edge and a total number of 3N n=  atoms. The 
atoms are counted and F  calculated as follows:  
 

2

3 1 3 1 3 2 3 1 3

6 12 8 6 2 8 61
6

n nF
n N N N N
− + ⎛ ⎞= = − + ≈⎜ ⎟

⎝ ⎠
 (1) 

 
The smallest cube has 8 atoms, and each of them is at the surface, while the next larger 
cube has 27 atoms, one of which is at the center. For large cubes the dispersion scales as 

1/31/ N , which is proportional to 1/ d  (where d  is the edge length). It should be noted 
that this description includes only cubes with completed shells. Intermediate cases are 
more complicated to describe and show a somewhat higher dispersion so that the 
scaling law loses its smooth character.  
 
The quantum confinement effect is a consequence of quantum mechanics and of the 
particle wave duality. Electrons behave at the same time as particles and as waves. As 
waves they explore the entire space in which they are free to move. In clusters of noble 
gases they remain confined to the atoms, and in clusters of molecules like water or 
carbon dioxide they remain confined to these molecules. Noble gases or molecular 
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clusters therefore do not show quantum size effects beyond the ones which they show in 
the isolated atoms or molecules. However, in semiconductors or metals the conduction 
electrons are free to move in the entire cluster or particle, and the electron waves adapt 
to the size of the particle in such a way that the nodes (this is where the amplitude of the 
oscillating wave is zero) of the waves are at the surface (Figure 2). This is exactly the 
same phenomenon that we know from the sound waves in music instruments. As the 
size of the instrument increases from the violin to the viola, the cello and the bass this 
allows the maximum wavelength to be excited and accommodated inside the resonance 
box of the instrument to increase and the sound to change. In the same way as the tones 
and overtones of the excited string are quantized, the energies of delocalized electrons 
in a cluster are quantized.  
 

 
 

Figure 1. Size-dependence of the dispersion for cubic particles with 1/3n N=
 
atoms 

along an edge.(Roduner E. (2006), Nanoscopic Materials: Size-Dependent Phenomena, 
Cambridge, UK: RSC Publishing. Reproduced with permission of the Royal Society of 

Chemistry). 
 
There are music instruments in which the excited waves are mostly inside a resonance 
body, for example in guitars or in organ pipes, but in others it is primarily the surface 
which is excited, such as in drums, where there are two-dimensional waves of the 
excited skin. In the same way there are not only volume waves of the conduction 
electrons but also collective excitements of surface electrons. The latter are called 
surface plasmon resonances, and they play an important role in gold or silver 
nanoparticles.  
 
An additional requirement that comes in from quantum mechanics is the Pauli principle, 
which states that at most two electrons (when they have opposite spin) can occupy a 
quantum state. Thus, when we fill electrons into the level scheme it happens that the 
level gets filled, and the next electron will have to occupy the next higher level, in 
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exactly the same way as we know it from atoms as we move through the periodic table. 
This has the consequence that the electron energy jumps when a new series of levels 
(called a shell) starts to be occupied. Therefore, quantum size effects lead to non-
continuous size scaling behavior, which is in contrast to that of surface effects. In fact, 
the behavior of spherical clusters is so closely analogous to that of atoms that clusters 
containing delocalized conduction electrons (this is an essential requirement) are best 
regarded as pseudo-atoms or super-atoms, a fact that will be discussed further in chapter 
5 below.  
 

 
 

Figure 2: “Quantum confinement” of standing waves that fit into a simple instruments 
resonance box with zero (green), one (blue), two (black), three (red) and four (pink) 

nodes. Intermediate wavelengths are not permitted. 
 
3. Learning from Surface Physics and Chemistry 
 
Surface physics and chemistry is a discipline which is several decades older than 
nanochemistry. Since the dispersion of nanomaterials is high it is important to 
understand surface effects, and much of this knowledge can be taken from surface 
science – except that surface science is done on larger specimens, where nano-size 
effects do not occur. 
 
Splitting a crystal along one of the crystal planes creates two new surfaces, and the work 
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spent to do the splitting is directly the initial surface energy of the fresh surface. Thus, 
the surface energy is calculated from the sum of bond energies of all the covalent, ionic 
and van der Waals bonds across the splitting plane which were broken when the crystal 
was split. 
 
Breaking the crystal also breaks the local symmetry at the new surface. Atoms or 
molecules which previously occupied a site with a symmetry corresponding to their 
position in the bulk lattice are now found near the surface where the translational 
periodicity stops at the surface, while it is still there towards the inside of the crystal. 
 
Breaking the crystal also creates an imbalance of forces at the surface which calls for a 
new equilibrium. The dangling bonds of a fresh diamond surface want to be satisfied, 
and they achieve this by forming chemical bonds to molecules which are available in 
the environment. In humid air they will be terminated after a short time with surface 
hydroxyl groups. Many metals will form a thin oxide layer that lowers the surface 
energy. Both these effects occur by forming chemical bonds, a process that is called 
chemisorption. Lower energy surfaces tend to further lower their energy by 
physisorption, i.e. by forming weaker adsorptive bonds. Such processes are extremely 
important in nanochemistry and serve to stabilize small particles by capping their 
surface but also to steer the morphology of crystallites of a given crystal structure to a 
wide variety of shapes. The basis of the latter process is the different adsorption energy 
of an adsorbate at different crystal facets. An adsorbate that adsorbs strongly on a given 
surface essentially blocks this surface from growing. At other facets adsorption may be 
weak and dynamic, so that further atoms or molecules may be added whenever the 
adsorbate has left a surface site free for a moment.  
 
However, even in vacuum a freshly created surface will react to the imbalance of forces. 
For example, the dangling bonds of a fresh silicon (100) surface will satisfy themselves 
by forming a through-surface “banana bond” to a neighboring atom. This leads to the 
formation of dimers parallel to the surface, which results in dimer rows and grooves at 
the surface. The process is called surface restructuring. Also the surface of a sodium 
chloride crystal will restructure under the formation of surface dimers, but these are 
oriented perpendicularly to the surface: the surface sodium cations move towards the 
neighboring chloride anion in the second layer, while the sodium ions in the second 
layer move toward the surface and make a shorter bond to the surface chloride ion. 
 
The question is how deep this surface restructuring is effective. It depends on the range 
of the forces, and in general this is only a few to very few atomic layers. For more or 
less spherical particles there is a net force towards the inside. This is readily understood 
if one realizes that the surface free energy which is the same as the surface tension leads 
to a pressure, as in a soap bubble or in a small balloon, that compresses the particle. It 
has the effect that in small particles below 10 nm radius the density increases, and larger 
particles have a density gradient near the surface with up to a few percent shorter bonds 
compared with the bulk. Even if it is only a few percent, it has significant consequences, 
as shorter interatomic bonds between the atoms of a transition metal particle increase 
the binding energy of adsorbates and therefore affects catalysis.  
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4. The Average Coordination Number and the Stability of a Particle 
 
In face-centered and hexagonal close packed cubic crystal structures an atom in the bulk 
is in direct contact with 12 neighbors, i.e. its coordination number is 12. A fragment of 
such a structure is shown in Figure 3, and the coordination number of several atoms at 
the surface is indicated. The highest value that is shown is 9 for an atom inside a surface 
layer of a (111) crystal face. It is readily seen that it is surrounded with six atoms of the 
same plane, and from below it is in contact with three further atoms. If one would place 
another layer on top this would give the atom three more direct neighbors and the full 
bulk coordination number of 12. An atom on the (110) surface has only four direct 
neighbors in the same plane, four more make contact from below, giving it a total of 8. 
Corner atoms have rather low coordination numbers.  

 

 
 

Figure 3. Fragment of a face-centered cubic crystal indicating the coordination numbers 
of various surface atoms. 

 
To first order, if we neglect the interactions with the second and higher shells, each 
direct neighbor contributes with one bond to the binding energy or cohesive energy of 
an atom in the lattice. The total cohesive energy of a crystallite is the sum of all atomic 
contributions (without counting the interaction of a pair of atoms A−B and B−A twice). 
Obviously the smaller the crystallite the higher the dispersion and therefore the fraction 
of atoms with a lower coordination number, which results in a decrease of the average 
cohesive energy per atom. This is shown in Figure 4. Plotted as a function of the 
number of atoms 1/3N −  this gives a linear scaling, showing convincingly that the origin 
is a surface effect.  
 
The extrapolated coordination number for the bulk is 12, and the calculated cohesive 
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energy per bond is 0.23 eV (experimental value: 0.25 eV, one-sixth of the bulk binding 
energy per atom). The large change in cohesive energy per atom is impressive. It is 
plausible that this will have consequences for the melting or sublimation temperature of 
a cluster.  

 
 

Figure 4: Average coordination number NN (upper entry) and cohesive energy per 
atom, cohε (lower entry) calculated for small magnesium clusters of up to 309 atoms. 

The different symbols in the upper entry relate to different structural isomers (Köhn A., 
Weigend F., Ahlrichs R. (2001) Phys. Chem. Chem. Phys. 3, 711. Reproduced with 

permission from the PCCP Owner Societies). 
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For equilibrium conditions the size-dependence of stability is given in terms of the 
chemical potential μ , which for one-component systems is a is a molar Gibbs free 
energy  
 

nano bulk
m

4
V d
γμ μ= +  (2) 

 
 
As expected, nanoμ  is higher than bulkμ , and the difference is related to the surface or 
interfacial tension γ (for non-isotropic materials the average over the different crystal 
faces should be taken), the molar volume mV  and the particle diameter d . Experimental 
evidence for this has long been known in terms of Ostwald ripening: when a saturated 
solution of a soluble substance is stirred it is observed that the crystallites coarsen with 
time, which means that the large crystallites grow at cost of the smaller ones. It is also 
possible to verify this relation quantitatively, for example for electrochemically active 
substances. In a cell where the two half cells are identical except that one half-cell 
works with sufficiently large crystallites to represent bulk conditions while the other 
half-cell works with the nanomaterial, the electromotive force (emf) is related in a first 
approximation to the Gibbs free energy via the Nernst equation by  
 

m

4 nF E
V d
γ

= − Δ  (3)  

F is the Faraday constant (96485 C · mol
−1

), n  the number of electrons transferred per 
mol turnover in the oxidation and reduction reactions of the two half-cells, and EΔ  is 
the measured emf of the cell. Figure 5 shows the result of such measurements for the 
example of nanocrystalline 2TiO  (anatase), and it reveals that 5 nm particles are less 

stable by ca. 50 kJ mol
−1

 than bulk material. The figure confirms the expected linear 
dependence in a 1/ d -plot, except for a small offset for the bulk reference values.  
 

 
 

Figure 5: Size-dependence of the Gibbs free energy of formation of nanocrystalline 
2TiO  (anatase) particles at temperatures where thermal equilibrium is granted. (Drawn 

based on data by Balaya P. (2008), Energy Environm. Sci. 1, 645.). 
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