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Summary 
This chapter illustrates the application of continuum mechanics to the modeling of solid 
materials through the development of specific constitutive equations adapted to each 
material. A general view of the most used and useful approaches and constitutive 
theories applicable to the deformation, fatigue and fracture of metals, composite and 
biological materials are reviewed. 

Deformation of metals and alloys has been customarily modeled by plastic theories 
based on yield criteria, with damage and failure dealt with through independent criteria. 
Fracture Mechanics concepts, introduced at the last half of the 20th century, have 
helped to integrate failure and fatigue theories and are the basis of new developments. 

Composite materials have become standard in structural application in engineering 
because their outstanding specific properties (stiffness and strength) and the possibility 
of tailoring the microstructure to obtain a given set of properties. The relationship 
between the microstructural characteristics (volume fraction, shape and spatial 
distribution of matrix and reinforcement) and the macroscopic behavior can be obtained 
by means of homogenization methods. They were initially developed for the elastic 
regime and have been extended in recent years to deal with plasticity and damage. 

Biological materials show a striking combination of optimized properties such as 
strength, toughness and compliance. Due to the fact that soft biological materials show a 
highly nonlinear, incompressible behavior, and that they are ordinarily subjected to 
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large strains under a complex multiaxial stress state, the initial models drawn from 
polymer science have given way to phenomenological constitutive equations with a 
more or less close connection to the microscopical constituents. 

 
1. Introduction 
 
This chapter illustrates the application of continuum mechanics to the modeling of solid 
materials through the development of specific constitutive equations adapted to each 
material. The following sections summarize some of the most important constitutive 
theories applicable to the deformation fatigue and fracture of metals, composite and 
biological materials aiming at giving to the reader a general view of the most used and 
useful approaches. 
 
It has not been the intention of the authors to give a detailed and thorough description of 
all the available models and theories but to show in a simple and intelligible way the 
methods and techniques used to deal with involved topics like damage, fracture or 
heterogeneity within the framework of the continuum mechanics. All the sections of this 
chapter are self-contained and can be read independently. The authors presume that the 
reader has a basic knowledge of continuum mechanics, and that it is acquainted with the 
tensor notation. 
 
2. Application to Metals 
 
Metals and alloys are materials being used by the human being since the end of the 
Stone Age. However, the scientific knowledge of its mechanical behavior begins at the 
XIX Century. The theories to model plastic behavior of metals and alloys were 
developed along the XX Century. Tresca (1864) and Von Mises (1913) proposed their 
yield criteria. Levy (1864), Mises (1913), Prandtl (1924) and Reuss (1930) established 
the stress-strain relationship. Failure criteria were proposed from the pioneering work of 
Hancock and Mackenzie (1976); finally, fatigue behavior was modeled using Fracture 
Mechanics concepts since the work of Paris and Erdogan (1963). This section 
summarizes the State of the Art of Solid Mechanics applications to metals and alloys. 
 
2.1. Plasticity Models 
 
For metals and alloys, the plastic strain rate tensor pε�  is a function of the deviatoric 
stress tensor ′σ  
 

( )p ′=ε f σ�  (1) 
 
After some mathematical manipulation, Prandtl-Reuss equations are derived 
 

( )p
2

3
2 F
σ

σ
′ ′= =

′
ε f σ σ

�
�  (2) 

 
where σ  is the equivalent stress (Mises stress) defined as 
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3
2

σ ′ ′= σ σi  (3) 

 
F ′  is the derivative of function defined as the relationship between σ  and the plastic 
work per unit volume 
 

( )pF dσ ′= ⋅∫σ ε  (4) 

 
This equation is taking into account the increase of yielding stress with plastic work 
(work hardening). Alternatively, it can be substituted by the following expression, more 
artificial although easier to use 
 

( )pH dσ = ∫ ε  (5) 

 
where pε�  is the rate of equivalent plastic strain, defined as 
 

p p2
3

pε = ⋅ε ε� � �  (6) 

 
and Prandtl-Reuss equations yield 
 

p 3
2 H
σ
σ

′=
′

ε σ
�

�  (7) 

 
valid for 0σ >�  (loading), otherwise p 0=ε�  (unloading). 
 

( )•H is thus the function relating equivalent stress and equivalent plastic strain. For 
uniaxial stress conditions (tension or compression), σ  coincides with the applied stress, 
and pε  coincides with plastic strain in the direction of the applied stress, so that 
function ( )•H  is the stress-plastic strain curve obtained in a tensile test with the alloy. 
 
Such stress-plastic strain curve used to be dependent on temperature and strain rate. The 
most widely used analytical formulae are those by Johnson-Cook and Zerilli-
Armstrong. Johnson-Cook equation is an empirical formula 
 

( ) ( )( )* *1 ln 1–
np mA B C Tσ ε ε⎡ ⎤= + +⎢ ⎥⎣ ⎦

�  (8) 

where *ε�  is the strain rate ratio 
 

*

0

εε
ε

=
��
�

 (9) 
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ε�  being the actual strain rate, 0ε�  a reference strain rate and *T  is a temperature factor 
given by 
 

* 0

m 0

T TT
T T
−

=
−

 (10) 

 
where T  is actual temperature, 0T  a reference temperature and mT  the melting 
temperature. A, B, C, m and n are empirical constants. 
 
Zerilli-Armstrong expressions are derived from dislocation motion equations. For FCC 
metals 
 

( ) { }p
0 2 3 4exp ln

n
C C C T C Tσ ε ε= + − + �  (11) 

 
For BCC metals 
 

{ } ( )p
0 1 3 4 5exp ln

n
C C C T C T Cσ ε ε= + − + +�  (12) 

 
where ε�  is the strain rate, T  the absolute temperature and 0 1 2 3 4 5, , , , ,C C C C C C  and n 
are material constants to be determined experimentally. 
 
2.2. Damage and Fracture Models 
 
Continuum Mechanics models of ductile fracture of metals and alloys are usually 
developed by transforming the general equations of Plasticity to incorporate into the 
most common damage mechanisms. These consist of the nucleation, growth and 
coalescence of voids from second phase particles that fail by fracture or decohesion 
from the metal matrix. The metal or alloy is identified with a porous material whose 
porosity increases with plastic deformation due to continuous nucleation of new voids 
and growth of the old ones. Void coalescence is the damage process determinant of 
failure modes such as ductile crack growth or localized plastic flow and shear fracture. 
The most widely known porous ductile material model is originally due to Gurson [2.1], 
even though posterior contributions have fruitfully improved it (see, for instance [2.2]). 
A scalar field representing the void fraction is incorporated into the constitutive 
equations of Plasticity to account for the influence of porosity on the macroscopic 
deformation. As a counterbalance, a porosity growth law must be added to the 
constitutive equations. Since plastic strain does not change volume, this law must 
express that the porosity growth rate only differs from the macroscopic volume strain 
rate in the contribution of void nucleation to the porosity rate. 
 
The constitutive equations modified by the incorporation of porosity are the yield 
condition and the stress-strain relations. Further, the spherical part of the stress tensor 
also must incorporated into these set of equations, since this component of stresses 
largely influences porosity, even though the plastic strains of the metal matrix do not 
depend on it. 
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Accordingly, a very simple model of porous ductile material can be formulated by 
assuming a rigid, perfectly plastic metal matrix, in which void nucleation and yielding 
occur simultaneously and no further void nucleation takes place. For such a material, 
plastic strains are the complete strains, the yield condition of the matrix becomes 
reduced to the substitution of the function F(•) of Eq (4) by a material constant, the yield 
strength Yσ , and the porosity growth rate coincides with the macroscopic volume strain 
rate. According to the original Gurson model, the yield condition, the stress-strain 
relations, and the porosity growth law for this porous material are given in the next table 
and compared with the analogous equations for the same material in the absence of 
porosity. 
 

 Non porous 
material Porous material  

Yield 
condition Yσ σ=  2 m

Y
Y

31 2 cosh
2

v v σσ σ
σ

⎛ ⎞
= + − ⎜ ⎟

⎝ ⎠
 (13) 

Stress-strain p 2
Y

3λ
σ

′= =ε ε σ�� �  m
p 2

Y Y Y

33 sinh
2

v σλ
σ σ σ
⎡ ⎤⎛ ⎞

′= = +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

ε ε σ 1�� �  (14) 

Porosity 
growth ptr tr 0= =ε ε� �  ptr tr

1
v

v
= =

−
ε ε

�� �  (15) 

 
In these formulae, σ  is the von Mises stress, mσ  the spherical stress, v  the void 
fraction, σ ′  is the deviator stress tensor, ε�  and pε�  are the complete and plastic strain-
rate tensors, λ�  is an indeterminate proportionality factor, 1 is the identity tensor, and a 
superimposed dot denotes time derivative. Plasticity problems involving a porous 
material as described by the equations of the third column of the table are solved by 
using these equations together with the general Continuum Mechanics ones 
(equilibrium, compatibility). 
 
For porous materials with isotropic work-hardening matrix, the yield strength Yσ  of the 

matrix is not a material constant, but a function ( )Y pF wσ =  of plastic work per unit 

volume pw , as stated in the previous section. To keep the balance between unknowns 
and equations, the condition of equal plastic work rate in the matrix and the porous 
material must be added. This yields the additional equation 
 

( ) ( ) ( )p p Y Y1 1v w v f σ σ′⋅ = − = −σ ε� � �  (16) 
 

( )f ′ ⋅  being the derivative of the inverse function ( )f ⋅  of ( )F ⋅ . 
 
 
 
- 
- 
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