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Summary 
 
Deep bed filtration is a rapid and efficient method for removing small particles from 
liquids. Such dispersions of particles in liquids are common in a wide range of 
industries; of particular interest to the civil or environmental engineer are those found in 
water and wastewater treatment. The removal of particles by deep bed filtration 
involves a complex array of mechanisms, which can be broadly classified as transport 
mechanisms, attachment mechanisms, and detachment mechanisms. This article 
provides an overview of the conditions and stages under which deep bed filtration 
occurs, and presents a summary of the mechanisms which govern the filtration process. 
 
1. Introduction 
 
 

 
 

Figure 1. Typical dimensions of particles and filter grains in aqueous deep-bed filtration 
(Ives, K. J. (1970) Rapid filtration. Water Research, 4, 201-223). 
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In deep bed filtration, particles are removed when passed through beds of granular or 
fibrous filter material. Deep bed filtration differs from other kinds of filtration in that 
the solid particles suspended in the fluid are generally smaller than the pores of the filter 
medium, as shown in Figure 1.  
 
As the suspension travels through the filter, the particles deposit at differing depths on 
the filter grains which constitute the bed. In engineering practice, deep bed filtration 
usually is used to treat raw water after the processes of coagulation, flocculation and 
sedimentation. 
 
1.1. Conditions of Deep Bed Filtration 
 
The surface charge of suspended particles and filter grains is important in deep-bed 
filtration. So-called favorable conditions occur when particles and filter grains are of 
opposite charges so that the particles and filter grains undergo an attractive interaction.  
 
Conversely, under unfavorable conditions repulsive interactions between particles and 
filter grains of like charge occur. In water or wastewater treatment, conditions are 
predominantly unfavorable due to the negative surface charge of both the filter media 
and the suspended particles. 
 
1.2. Stages of Deep Bed Filtration 
 
The filtration process consists of two stages: the initial stage, and the transient stage. In 
the initial stage, particle deposition occurs onto a clean filter; that is, particles are 
directly deposited onto filter grains. This particle deposition has a negligible effect on 
the properties of the filter during the initial stage. 
 
The transient stage occurs after the initial stage, and describes the remainder of the 
filtration process. Deposition occurs on filter grains which are already partially covered 
by deposited particles.  
 
During this stage, the performance characteristics of the filter change dramatically: the 
particle removal can increase or decrease depending on the factors such as available 
surface area, collection by deposited particles or changes in interstitial (through pores) 
velocity. This means the performance of the filter changes substantially over the 
duration of a filter run. 
 
The transient stage is often divided into three sub-stages; these are the ripening stage, 
working stage and breakthrough stage, as shown in Figure 2. The ripening stage is 
characterized by the improvement in filter effluent quality over time, or the decrease in 
the ratio of effluent concentration C to influent concentration C0. The working stage, in 
which particle removal remains essentially constant, generally follows the ripening 
stage. Finally, the break-through stage generally occurs in the latter part of filtration, 
where the filter efficiency decreases with time. It has been observed however that 
ripening and breakthrough can occur simultaneously in suspensions of varying particle 
size, as some particle sizes can show improvement while others deteriorate. 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

WATER AND WASTEWATER TREATMENT TECHNOLOGIES - Deep Bed Filtration: Modelling Theory and Practice - 
G. Keir, V. Jegatheesan, S. Vigneswaran 

©Encyclopedia of Life Support Systems(EOLSS) 

 
 

Figure 2. Typical curve showing filter performance over different stages of filtration. 
 
1.3. Transport Mechanisms 
 
 

 
 

Figure 3. Schematic representation of the common transport mechanisms in deep-bed 
filtration (Ives, K. J. (1970) Rapid filtration. Water Research, 4, 201-223). 
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Before particles can be captured by filter grains, they must first be transported 
sufficiently near the grain surface so that surface forces can bind the particle to the 
grain. A range of transport mechanisms have been observed, and are outlined in the 
following, with schematic representations of the main mechanisms shown in Figure 3. It 
should be emphasized that these various mechanisms do not act in isolation; suspended 
particles will bear their effects to varying degrees depending on flow conditions, filter 
geometry, and the physicochemical properties of the particles. 
 
1.3.1. Interception 
 
The transport of particles by interception occurs due to the finite size of particles. 
Consider a particle in a fluid stream; if all forces on the particle are negligible, the 
particle shall follow the fluid streamlines. Interception occurs when the streamlines 
approach the filter grains to within a particle radius. The mechanism of interception is 
characterized by the dimensionless number NR, which is the ratio of particle diameter dp 
to grain diameter dc. 
 
1.3.2. Inertial Impaction 
 
As fluid streamlines approach a filter grain, they must diverge as the flow passes around 
the grain. However, particles entrained in these streamlines, due to their inertia, do not 
change trajectories as the streamlines do. If the particle has sufficient inertia, it may 
follow a trajectory that will lead to collision with the filter grain surface. This inertial 
impaction is characterized by the dimensionless Stokes number, given by: 
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where ρp is the density of the particle, U is the fluid approach velocity, and µ is the 
dynamic viscosity of the fluid. 
 
1.3.3. Sedimentation 
 
If the density of a particle is greater than that of the fluid it is suspended in, the particle 
will settle out of suspension in the direction of gravity. This mechanism is characterized 
by the gravitational parameter NG, given by: 
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where ρ is the fluid density and g is the acceleration due to gravity. This can be seen to 
be the ratio of the particle Stokes velocity to the fluid approach velocity U. 
 
1.3.4. Diffusion 
 
For very small particles, a random movement is observed due to the thermal vibrations 
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of the fluid molecules; this is termed Brownian diffusion. For particles of diameter > 1 
µm, these effects are minimal due to viscous drag forces and torques exerted by the 
fluid. However, for particles of diameter < 1 µm (submicron or Brownian particles), this 
effect becomes important, and increases with decreasing particle size. The mechanism 
of diffusion is characterized by the Peclet number, given by: 
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d U
N
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=  (3) 

 
where D is the Stokes-Einstein diffusion coefficient. The Peclet number represents the 
relative importance of diffusion and convection in a fluid flow; i.e. a low Peclet number 
characterizes a flow dominated by diffusive effects, and a high Peclet number 
characterizes a flow dominated by convective effects. 
 
1.3.5. Hydrodynamic Action 
 
In deep-bed filtration, flow through the filter bed is generally laminar with some 
velocity profile, and hence a shear field. For a uniform shear field and a spherical 
particle, rotation of the particle causes a swerving path across the shear field. For non-
uniform shear field and aspherical particles (as is usually the case in practice), the 
particle is deflected in a similar, but unpredictable manner. The overall effect, termed 
hydrodynamic action, is of an apparently random drifting across the flow streamlines 
which may lead to contact with the filter grain surface. Efforts to characterize the 
importance of this effect via a suitable dimensionless number have so far been 
unsuccessful, due largely to the geometrical complexity of a typical filter pore 
arrangement. 
 
1.3.6. Straining 
 
When particles in suspension are larger than the pores in the filter medium, they will be 
retained by the process commonly known as straining. However, the presence of 
significant straining is undesirable in deep-bed filtration, as a filter cake or mat forms, 
clogging the bed rapidly. This requires a considerable increase in the pressure gradient 
required across the filter bed to maintain the desired flow rate, and does not efficiently 
make use of the entire depth of the filter. However, straining may often be unavoidable 
in practical situations, particularly for polydisperse solutions which may contain large 
particles. 
 
1.4. Attachment Mechanisms 
 
After transport to the filter grain surface, particles are then attached to the surface of the 
grain by a variety of mechanisms. These mechanisms depend greatly on the chemical 
characteristics of the filter system, and are generally considered to be substantially more 
important in determining filter performance than the initial transport stages. The forces 
which govern the attachment of particles to the filter grain surfaces can be broadly 
divided into long-range forces and short-range forces, as discussed below. 
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1.4.1. Long-Range Forces 
 
Long-range forces refer to those surface forces which influence particle transport and 
attachment at distances of up to approximately 100 nm. The primary long-range forces 
are listed as follows. 
 
London – van der Waals Force 
 
The London – van der Waals (VDW) force refers to the attraction between two closely 
separated surfaces, and is caused by momentary pairwise oscillations in electron 
density, causing the creation of instantaneous dipole moments that draw the interacting 
particles together. This force is mostly responsible for particle collection and adhesion; 
without it, hydrodynamic effects would prevent particles from reaching filter grain 
surfaces. 
 
There are a multitude of expressions for the VDW force for different geometries; in 
deep-bed filtration, the interaction is usually assumed to occur between a sphere (the 
particle) and a flat plate (the filter grain, as it is many times the size of the particle and 
appears locally to be flat).  
 
Broadly speaking, there are two approaches towards calculation of this force: these are 
Hamaker’s microscopic approach, in which the interaction is calculated by considering 
a pairwise summation of all intermolecular interactions; and the macroscopic approach 
of Lifshitz theory, which relies entirely on macroscopic electrodynamic properties of 
the two surfaces.  
 
While the Lifshitz theory is more rigorous, its use has been limited by lack of 
electrodynamic data for particles and filter media, and complexity in formulation for 
practical geometries. 
 
Thus, the Hamaker approach is almost universally used, with various corrections given 
to account for retardation of the VDW force (due to the finite time of propagation 
between bodies).  
 
Results are normally given in terms of the interaction energy per unit area, VA, and are 
tabulated below in Table 1, where H is the Hamaker constant, h is the separation 
distance between bodies, ap is the particle radius, h* is the dimensionless separation 
distance h/ap, and λ’ is a characteristic interaction wavelength assumed to be 100 nm. 
The VDW force FA can then be calculated by the following expression: 
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Table 1. Approximations for London-van der Waals interaction energy derived by 

various researchers. 
 
Electrical Double-Layer (EDL) Interactions 
 
Most surfaces in an aqueous environment have surface charges, which are balanced by 
an equivalent amount of counter-ions present in the solution. This double layer of 
charge is characterized by the zeta potential, which is the electrical potential between 
the bulk of solution and the outer region of the double layer. The classic treatment of 
the interaction between two double layers was developed by Derjaguin and Landau and 
Verwey and Overbeek, and is known as the DLVO theory. A variety of expressions for 
the double-layer force FDL are given in the literature; possibly the most widely used is 
the analytical expression of Hogg et al., given by: 
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where ε̂  is the dielectric constant of the liquid, pζ  and cζ  are the zeta potentials (an 
approximation of the surface potential) of the particle and collector (filter grain) 
respectively, n is the unit normal vector, and κ is the inverse Debye length, given by: 
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where e is the charge of an electron, k is the Boltzmann constant, T is the absolute 
temperature, and mj is the concentration of the jth ion species present in the solution with 
valence zj. 
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