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Summary 
 
Steam generating units or simply boilers as well as nuclear steam supply systems 
produce large quantities of steam at high temperatures and pressures.  This steam is used 
in steam turbines to generate electric power.  The steam generating unit is thus a major 
component of a thermal power plant.  Following a rapid evolution in size during the 
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middle of the twentieth century the current capacities for coal fired units are around 700 
MW electrical although units up to about 1300 MW electrical are feasible.  Once the 
efficiency of a typical steam cycle is taken into account the heat release rates due to 
combustion in the boilers are some two and a half times this value. 
 
For fossil fuel fired boilers this requires a very large furnace in which to burn fuel at a 
high mass flow rate.  The fuel, whether solid or liquid, has to be finely divided and 
mixed with air to promote rapid combustion.  For coal fired plants, the coal must be 
pulverised to a fine powder in suitable pulverising mills.  Large quantities of ash are 
produced and this has to be collected for disposal.  Coal fired boilers therefore require 
substantial auxiliary equipment to support the basic combustion process.  Even oil fired 
boilers require special fuel handling equipment.  All types use vast quantities of 
combustion air and hence need suitable fans to feed in the air and remove the exhaust 
gas.  The incoming air has to be heated and the exhaust gas cleaned to ensure good 
combustion efficiency and minimal environmental pollution. 
 
In order for modern fossil fuel fired boilers to meet current emission standards in 
industrialised countries, gas cleanup facilities must be provided.  In coal fired boilers a 
substantial quantity of fly ash must be removed from the exhaust gas.  Depending upon 
the sulphur content of the fuel, desulfurization units may need to be installed to remove 
sulphur dioxide and, in many densely populated areas, nitrogen oxides may need to be 
removed as well.  These additional back-end components of the boiler plant increase the 
complexity and cost of a power plant but are necessary to maintain good environmental 
conditions. 
 
1. Introduction 
 
1.1 Terminology 
 
In fossil fuel fired thermal power plants, that part of the plant which produces the steam 
to drive the turbine is known as the boiler plant or simply the boiler.  Since boiling is 
only one of the several processes that occur in this part of the plant a more correct term 
for it is steam generating unit.  This term is more explicit in stating its purpose while at 
the same time implying the incorporation of various auxiliary systems which contribute 
to the production of steam.  In nuclear fuelled thermal  power plants the correct term for 
the equivalent part of the plant is nuclear steam supply system. 
 
1.2 Development 
 
The development of steam engines can be traced back three centuries.  With their 
development came the need for steam production but, due to limitations in materials, 
steam could not be produced at pressures much above atmospheric.  Early steam 
engines thus operated by vacuum caused by the condensation of steam in a cylinder.  As 
materials improved, steam pressures increased and, in the next century, steam engines 
and steam locomotives were at the forefront of power production.  During the last 
century steam boilers and steam turbines evolved to become the largest continuous 
power producers.  Present day boilers of the water tube type go back at least a century 
and have been continually developed and refined into the efficient and sophisticated 
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units currently in service.  Materials are still one of limiting factors in further 
development and interestingly the combustion of some fossil fuels is still somewhat of 
an art rather than a science. 
 
1.3 Capacity and Size 
 
Plants built during the early part of the past century generally had a series of boilers 
feeding a common steam main which in turn fed a series of turbines.  This minimised 
the impact of forced shutdowns of any of the boilers on the overall production of the 
plant.  In the latter part of the past century improved reliability of boilers allowed the 
linking of individual boilers and turbines as single units without interconnecting steam 
lines between the units.  Boiler capacities then had to match the requirements of the 
turbine.  This is now common practice for units in the capacity range from about 100 
MW electrical to about 1300 MW electrical.  The latter size is however unusual and 
many large fossil fuel fired boilers currently in operation are around 700 MW electrical.  
 
1.4 Efficiencies 
 
There is economy of scale in building large units.  For example two units of half the size 
have a higher total capital cost than a single unit of the original size.  Large units are 
also usually more efficient as heat losses can be minimised and efficiency improving 
features more easily justified.  The efficiencies of most modern steam generating units 
are high having reached a sort of plateau.  The major thermal loss is in the exhaust gases 
being discharged to the atmosphere. 
 
2. Basic Design 
 
2.1 Fundamentals 
  
A steam generating unit consists essentially of a combustion zone in which fuel is burnt 
to release heat and a heat exchange zone where heat from the hot gases is transferred to 
the water and steam.  Fuel must be supplied to the combustion zone in a form in which 
it can be readily ignited and completely burnt within an acceptable time frame.  Air 
must also be supplied to the combustion zone in such a way as to promote rapid and 
complete combustion but not in excessive quantities.   
 
After combustion the hot combustion gases must be directed to the heat exchange zone 
and finally discharged to the atmosphere.  Within the heat exchange zone the hot gases 
transfer heat to the water and steam.  Ideally this would be a large counterflow heat 
exchanger with subcooled water entering where the gases are relatively cool and with 
superheated steam leaving where the gases are hottest.  There are however limitations 
with this arrangement.  Firstly the intensity of the radiant heat flux from the combustion 
zone can only be sustained by water cooled walls.   
 
Secondly without some initial cooling, the very high temperatures of the gases produced 
in the combustion zone would be too high for heat exchanger tube banks carrying steam.  
As illustrated in Figure 1 the combustion zone therefore is surrounded by water walls in 
which steam is generated.  The partially cooled hot gases then enter the superheater and 
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reheater tube banks above the furnace at the top of the boiler structure.  Finally, when 
relatively cool, the hot gases pass through the economiser at the back of the furnace and 
which preheats the incoming subcooled water.  It is evident then that the combustion 
zone and heat exchange zones are integrated and that the resultant arrangement is not 
ideal from a heat exchange point of view.  The material limitations which force heat to 
be transferred across a large temperature difference results in a substantial loss in 
available work potential in all fossil boilers. 
 

 
 

Figure 1  Cut away view of pulversied coal fired boiler  (courtesy of Babcock & 
Wilcox) 

 
2.2 Thermodynamic Guidelines 
 
Material limitations prevent the production of steam above about 560EC although 
slightly higher temperatures are possible with special steel alloys.  This effectively sets 
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an upper limit to the temperature of the thermodynamic cycle and hence a maximum 
possible Carnot cycle efficiency.  If the pressure in the boiler is increased the 
temperature at which heat is added during evaporation is also increased.  As the average 
temperature at which heat is added to the working fluid is increased, the cycle efficiency 
increases.  Thus it is advantageous to increase the boiler pressure as much as possible.  
There are however practical limitations as boiler components have to be sufficiently 
robust to withstand the high pressures.  From a thermodynamic point of view it is a case 
of diminishing returns because, at very high pressures, a given pressure increase will 
yield a lesser efficiency improvement than at lower pressures but still require the same 
capital investment to increase the thickness of all pressure components.  The generally 
accepted maximum economical pressure is just above the critical point somewhere 
around 26 MPa.  Just below the critical point pressure of 22 MPa there is the problem of 
separation of steam from the water as there is insufficient density difference.  To 
overcome this problem the maximum pressure at which circulating boilers with steam 
separating drums can operate is about 16 MPa.  Between 16 MPa and 26 MPa universal 
pressure or once-through boilers must be used.  In these the water is progressively and 
completely evaporated to steam while passing through any tube in the boiler only once.  
Most large utility boilers currently in service are circulating boilers and operate at about 
16 MPa and 540EC. 
 
Under these limiting conditions the steam system will have a certain Rankine cycle 
efficiency.  This efficiency can be improved by reheating the steam after partial 
expansion in the turbine.  During reheating heat is added at elevated temperatures so 
that the average temperature at which heat is received by the working fluid is increased.  
The efficiency of a reheated cycle is thus higher than that of the basic superheated cycle.  
Reheating also has benefits for the turbine which should not operate with an exhaust 
steam quality of less than about 90 percent.  The reheat pressure is usually between 20 
percent  and 25 percent of the initial superheat pressure.  Double reheating can be 
employed but the gain in efficiency is hardly worth the additional capital expenditure of 
running a second set of steam pipes from the turbine to the boiler and back. 
 
- 
- 
- 
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