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Summary 
 
In the past, the design and operation of energy systems, either stationary (power plants, 
co-generation systems, chemical plants, air-conditioning systems, etc.) or mobile 
(propulsion plants, car engines, etc.) was based primarily on experience. The 
complexity of contemporary systems and the need to satisfy several objectives, often 
conflicting with each other (low cost, high efficiency, low emission of pollutants, etc.) 
make it necessary to aid the work of the system designer and operator with 
mathematical optimization techniques.  
 
An overview of available methods is presented, divided in two main categories: (a) 
general mathematical methods, applicable also to energy systems, and (b) special 
methods for energy system optimization. There is still need of further research and 
development in the field; a few hints for the work ahead are given. 
 
1. Introduction 
 
In designing an energy system that covers certain needs, the first concern is to reach a 
workable system, i.e. a system that performs the assigned task within the imposed 
constraints. The main steps in achieving a workable system are (1) to select the concept 
to be used (system configuration), and (2) to specify all the technical characteristics of 
the system components so that the requirements and constraints are satisfied. In most of 
the cases there are more than one workable system. The task is then to identify the 
optimum system based on a defined criterion, e.g., efficiency, size, weight, cost.  
 
In operating an energy system, there may be various combinations of components and 
their operating points (e.g., load factors) that satisfy the needs, while the needs usually 
change with time. The challenge at this stage is to identify the best operating conditions 
of the system, i.e. the conditions that satisfy a certain criterion.  
 
In both stages (design, operation) the variations of workable systems and/or of operating 
conditions that satisfy the needs may be so many that an evaluation of each and every 
one in order to select the best one is practically impossible.  
 
Consequently, there is need of a systematic procedure to determine the optimum system 
and the optimum mode of operation. The procedure is called by the general name 
“optimization.” Methods appropriate for optimization of energy systems are presented 
in brief in this article. For a thorough knowledge of the subject, a study of the relevant 
literature is necessary. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

EXERGY, ENERGY SYSTEM ANALYSIS AND OPTIMIZATION – Vol. II - Optimization Methods for Energy Systems - C. A. 
Frangopoulos 
 

©Encyclopedia of Life Support Systems (EOLSS) 
 

2. Definition of Optimization 
 
A goal is specified and expressed as a mathematical function of certain variables, which 
is called an “objective function.” Optimization can be defined as follows:  
 
Optimization is the process of finding the conditions, i.e. the values of variables, that 
give the minimum (or maximum) of the objective function. 
 
In the literature on energy systems, the word “optimization” is often used in cases where 
the proper word is “improvement.” The two words do not have the same meaning and 
care should be exercised in their use. 
 
3. Formulation of the Optimization Problem 
 
3.1 Mathematical Statement of the Optimization Problem  
 
The general optimization problem consists of a determination of the extremum 
(minimum or maximum) of an objective function under certain constraints. It is usually 
stated mathematically as follows: 
 
minimize f( )x  (1) 
 

1 2 nwith respect to  = (x , x , , x )x …   (2) 
 
subject to the constraints: 
 

ih ( ) = 0, i = 1, 2, , Ix …  (3) 
 

jg ( )  0, j = 1, 2, , J≤x …  (4) 
 
where 
x vector of independent variables,  
f(x) objective function, 
hi(x) equality constraint functions, 
gj(x) inequality constraint functions. 
 
Maximization is also covered by Eq. (1), since: 
 
min f(x) = max {–f(x)} 
 
3.2. Objective Functions 
 
The decision regarding which criterion is to be optimized is of crucial importance and 
the answer depends on the particular application: in an aircraft or space vehicle, it may 
be the minimum weight of the system; in an automobile, it may be the minimum size of 
the system; in a stationary power plant it may be the minimum life cycle cost (LCC) of 
the system. Examples of other objective functions for energy systems include: 
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maximization of efficiency, minimization of fuel consumption, maximization of the net 
power density, minimization of emitted pollutants, maximization of the internal rate of 
return (IRR), minimization of the payback period (PBP), etc. Some of these are pure 
technical objectives, while the rest are (thermo)economic objectives.  
 
In a complex world, a single objective may result in a system that does not satisfy other 
requirements. Consequently, the final design may deviate from, for example, the least 
cost one, in order to take environmental, social, aesthetic or other aspects into 
consideration. Methods have been developed under the name “multiobjective 
optimization,” which attempt to take two or more objectives into consideration 
simultaneously. The optimum point they reach does not satisfy each objective in 
isolation but it corresponds to a compromise, often subjective, of the various objectives. 
 
3.3. Independent Variables 
 
Each component and the system as a whole is defined by a set of quantities. Certain of 
those are fixed by external conditions (e.g., environmental pressure and temperature, 
fuel price) and are called “parameters.” The remaining are variables, i.e. their value may 
change during the optimization procedure. Those variables, the values of which do not 
depend on other variables or parameters, are called “independent variables.” The rest 
can be determined by the solution of the system of equality constraints and they are 
called ‘dependent variables’. The number of dependent variables is equal to the number 
of equality constraints. Thus, the task of the optimization procedure is to determine the 
values of the independent variables (x in Eqs. (1)–(4)). Of course, if the number of 
equality constraints is higher than the number of all the variables, then the problem is 
over-specified and there is no room for optimization. 
 
3.4. Equality and Inequality Constraints 
 
The functions appearing in Eqs. (3) and (4) are expressions involving design 
characteristics and operating parameters or variables of the components as well as the 
system as a whole. For example, the required mass flow rate of steam in a steam turbine 
is given as a function of the power output and the properties of steam at the inlet and 
outlet of the turbine. On the other hand, the safety and operability of the system impose 
inequality constraints such as the following: speed of revolution not higher than a 
certain limit; quality (dryness) of steam at the exit of the steam turbine not lower than a 
certain limit, etc.  
The set of equality and inequality constraints is derived by an analysis of the system and 
constitutes the mathematical model of the system. Models may initially be developed at 
the level of each component, which are then integrated to form the model of the whole 
system.  
 
A word of caution: Describing reality by mathematics is not an easy task and it is often 
accompanied by simplifying assumptions, which introduce inaccuracies. This is 
mentioned not in order to deter one from applying modeling and optimization 
techniques, but to make it clear that the solution (design or operation point) reached is 
optimal only under the assumptions made in modeling the system; and it is as close to 
the real optimum as any discrepancies between model and reality allow. However, most 
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probably, if a care has been taken, it is closer than a decision based only on past 
experience or similar preceding designs. 
 
4. Levels of Optimization of Energy Systems 
 
Optimization of an energy system can be considered at three levels: 
 
(A)  Synthesis optimization. The term “synthesis” implies the components appearing in a 

system and their interconnections. If the synthesis of a system is known, then the 
flow diagram of the system can be drawn.  

(B)  Design optimization. The word “design” here is used to imply the technical 
characteristics (specifications) of the components and the properties of the 
substances entering and exiting each component at the nominal load of the system. 
The nominal load is usually called the “design point” of the system. One may argue 
that design includes synthesis too. However in order to distinguish the various 
levels of optimization and due to the lack of a better term, the word ‘design’ will be 
used with the particular meaning given here.  

(C)  Operation optimization. For a given system (i.e. the synthesis and design are 
known) under specified conditions, the optimal operating point is requested, as it is 
defined by the operating properties of components and substances in the system 
(speed of revolution, power output, mass flow rates, pressures, temperatures, 
composition of fluids, etc.).  

 
Of course if complete optimization is the goal, each level cannot be considered in 
complete isolation from the others. Consequently, the complete optimization problem 
can be stated by the following question:  
 
What is the synthesis of the system, the design characteristics of the components and the 
operating strategy that lead to an overall optimum? 
 
The degree of freedom increases when the task of the system, i.e. its production rates, 
are not pre-specified but are to be determined by the optimization procedure. Time-
dependent optimization adds one more dimension, which increases the complexity of 
the problem. 
 
 
 
5. Mathematical Methods for Solution of the Optimization Problem 
 
In spite of their apparent generality, there is no single method available for solving 
efficiently all the optimization problems stated by Eqs. (1)–(4). A number of methods 
have been developed for solving different types of optimization problems. They are 
known as mathematical programming methods and they are usually available in the 
form of a mathematical programming algorithm.  
 
5.1 Classes of Mathematical Optimization Methods 
 
Optimization problems and the techniques developed for their solution can be classified 
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in several ways, depending on the criterion. The classification is very useful from the 
computational point of view, because there are many special methods available for the 
efficient solution of particular classes of problems.  
 
5.1.1. Constrained and Unconstrained Programming 
 
Any optimization problem can be classified as constrained or unconstrained, depending 
on whether or not constraints exist in the problem.  
 
5.1.2. Search and Calculus Methods 
 
A search method uses values of the objective function in order to locate the optimum 
point, with no use of derivatives. On the contrary, calculus methods use first and (some 
of them) second derivatives. Search methods calculate the values of the objective 
function at a number of combinations of values of the independent variables and seek 
for the optimum point. The search may be random or systematic, the second one usually 
being more efficient.  
 
If the objective function is continuous, by applying a search method the exact optimum 
can only be approached, not reached, by a finite number of trials, because only discrete 
points are examined. However, the region, in which the optimum point is located, can 
be reduced to a satisfactorily small size at the end of the procedure. On the other hand, 
there are problems for which search methods may be superior to calculus methods, as 
for example in optimization of systems with components available only in finite sizes. 
 
5.1.3. Linear, Nonlinear, Geometric, and Quadratic Programming 
 
This classification is based on the nature of the equations involved. If the objective 
function and all the constraints are linear functions of the independent variables, then a 
linear programming (LP) problem is at hand. If at least one of the functions (no matter 
whether it is the objective function or one of the constraint functions) is nonlinear, then 
the problem is a nonlinear programming (NLP) problem.  
 
A geometric programming (GMP) problem is one in which the objective function and 
the constraints are expressed as posynomials in x. A function f(x) is called a 
posynomial, if it has the form: 
 

1211 1n N1 N2 Nn
1 n N n1 2 1 2

a aa a a af( ) = c x x ...x + ... + c x x ...xx   (5) 
 
where ci and aij are constants and ci > 0, xj >0. 
 
A quadratic programming (QP) problem is a nonlinear programming problem with a 
quadratic objective function and linear constraints. 
 
5.1.4. Integer- and Real-valued Programming 
 
This classification is based on the values permitted for the independent variables. If 
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some or all of the independent variables of an optimization problem are restricted to 
take on only integer (or discrete) values, then the problem is called an integer 
programming (IP) problem. If all the independent variables are permitted to take any 
real value, then the optimization problem is called a real-valued programming problem.  
 
The existence of integer variables in linear and nonlinear programming problems leads 
to mixed integer linear programming (MILP) and mixed integer nonlinear 
programming (MINLP) problems, respectively. 
 
5.1.5. Deterministic and Stochastic Programming 
 
If some or all of the prespecified parameters and/or independent variables are 
probabilistic (nondeterministic or stochastic), then the optimization problem is a 
stochastic programming problem. Otherwise, it is a deterministic programming 
problem. 
 
5.1.6. Separable Programming 
 
A function f(x), x = (x1, x2, …, xn), is called separable if it can be expressed as the sum 
of n single-variable functions: 
 

n
i i

i 1
f ( ) f (x )

=
= ∑x  (6) 

 
A separable programming problem is one in which the objective function and the 
constraints are separable functions. 
 
5.1.7. Single and Multiobjective Programming 
 
Depending on the number of objective functions, optimization problems can be 
classified as single-objective or multiobjective programming problems. In most of the 
problems there is no single point x* that satisfies all the objectives simultaneously. 
Therefore, there is usually need of a compromise, often subjective. 
 
5.1.8. Dynamic Programming and Calculus of Variations 
 
Dynamic programming (DP) or calculus of variations (COV) is applied when an 
optimal function rather than an optimal point is sought. The calculus of variations seeks 
a function that optimizes an integral; in a single variable, the problem is stated as 
 

2

1

x
min I F(x, y, y ', y '')dxy x

= ∫  (7) 

 
where y = y(x) is the function sought, F is a known function and 

2

2
dy d yy ' , y ''
dx dx

= =  
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Dynamic programming is applicable to staged processes or to continuous functions that 
can be approximated by staged processes. Thus, the decision variables are sought for 
which, for a specified input to stage n and a specified output from stage 1, the 

summation 
n

i
i 1

F (y)
=
∑   is optimum. 

 
COV and DP are both methods to determine y(x). Which method is precise and which is 
an approximation depends on the problem. If, for example, the velocity of a vehicle is 
continuously adjusted during a trip to minimize the total fuel consumption, COV is a 
precise representation and DP is an approximation (since it would represent the varying 
speed as a series of steps). If, however, the problem were to optimize the sizes of a 
series of heat exchangers, DP would be the precise method and COV an approximation. 
 
5.1.9 Genetic Algorithms 
 
Genetic Algorithms (GAs) have been developed by J. Holland in an attempt to simulate 
growth and decay of living organisms in a natural environment. Even though originally 
designed as simulators, GAs proved to be a robust optimization technique. 
Philosophically GAs are based on the concepts of biological evolution (natural genetics 
and natural selection) and Darwin’s theory of survival of the fittest. The basic elements 
of natural genetics, i.e., reproduction, crossover and mutation, are used in the genetic 
search procedure. The main characteristics of the GAs, which highlight also their 
differences from the traditional methods of optimization, are the following: 
 

 A population of points (instead of a single point) inside the optimization space, 
selected randomly, is used to start the procedure. Since several points are used as 
candidate solutions, GAs are less likely to be trapped at a local optimum.  

 The GAs use only the values of the objective function. The derivatives are not 
used.  

 In GAs the decision variables are represented as strings of binary variables, that 
correspond to the chromosomes in natural genetics. Any type of variables, either 
discrete (e.g. integers) or continuous, can be handled. For continuous variables, 
the string can be selected so that the desired resolution is achieved.  

 The value of the objective function of each string in a population plays the role 
of fitness in natural genetics.  

 A new population is generated (reproduction) by applying randomized crossover 
and mutation on the old one. The value of the objective function is used so that 
“weak” strings are dropped out, while “strong” strings give more offsprings in 
the new population. The procedure is repeated until no further improvement is 
achieved.  

 
The aforementioned show that GAs are appropriate for problems with mixed discrete-
continuous variables and discontinuous and non-convex decision spaces. Furthermore, 
in most cases they have a high probability in finding the global optimum. 
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